Photons' in Relativistic Plasma with Velocity Shear: A novel mechanism for power law spectra at high energies

Mukesh Kumar Vyas
Bar Ilan University, Ramat Gan, Israel
Supervisor : Asaf Pe’er

HEPRO - VIII, October, 23rd, 2023
Overview

- **Introduction**: Fermi acceleration and photon energy gain in shearing flows
- **Physical mechanism** of photon energy gain
- Generation of power law spectrum at high energies
- **Results**: Comparison of estimated spectral slopes with Monte Carlo Simulations
- **Conclusions**: Significance of the work
First order Fermi acceleration:
Shock acceleration of charged particles

Electrons gain energy and produce a power law spectrum when they interact with regions having different speeds in the plasma.
Particle acceleration in shearing flows

But what about a photon, trapped and escapes from shearing scatters??
We need investigation and a clear picture of this process.
Any relativistic flow with a presence of
(i) Shear,
(ii) High optical depth
would lead to net photon energy gain producing a power law emission of spectra
Generation of power law due to *Velocity shear* in the plasma

Physical picture

Simulations of radiation-driven winds from Keplerian discs (Raychaudhuri, Vyas & Chattopadhyay, 2021)
Attempts to explain high energy power law

- **Synchrotron shock model**
 - Tavani 1996; Cohen et al 1997; Panaitescu et al. 1999; Frontera et al. 2000

- **Backscattering dominated emission**

- **Bulk Comptonization from structured jets with photospheric emission**
 - Lundman et al. 2013, Vyas & Pe’er 2022 (current work)

Piron, Comptes Rendus Physique 17, no. 6 (2016): 617-631
Photon energy gain from relativistic jets with structured Lorentz factor profile

\[\Gamma(\theta) = \Gamma_{\text{min}} + \frac{\Gamma_0}{\sqrt{\left(\frac{\theta}{\theta_j}\right)^{2p} + 1}} \]

Lorentz factor (\(\Gamma\)) as a function of \(\theta\)

Lundman et al. 2013, 428-3, 2430
Lundman et. al. 2014, MNRAS 440 3292

Case of GRB jets: Energy gain in scattering process

1. Analytic estimates of spectral slopes

\[
g = \frac{\varepsilon_2}{\varepsilon} = \frac{1 - \beta_2 \cos(\theta_s - \theta_{el})}{1 - \beta_2 \cos(\theta_2)}
\]

\[
\frac{\Gamma_2}{\Gamma} = 1 + \frac{\delta \Gamma}{\Gamma} = 1 + \sum \frac{\partial \log \Gamma}{\partial x^i} \delta x^i
\]
Energy gain in scattering process

If the local mean free path measured in the lab frame is \(\lambda(r, \theta) \), then

\[
\tan \theta_{el} = \frac{\lambda \sin \theta_s}{r + \lambda \cos \theta_s} = \frac{a \theta_s}{1 + a \cos \theta_s}
\]

Taylor expansion allows us to estimate the gain as:

\[
g(r, \theta) \approx \frac{1}{2} \left[1 + \left[1 + \sum \frac{\partial \log \Gamma}{\partial x^i} \delta x^i \right]^2 \frac{1}{(1 + a)^2} \right]
\]

\[a \equiv \lambda/r \]
Averaged gain over all scatterings

The expectation value of the photon energy gain in the plasma is evaluated by integrating the average gain over the entire region of scattering

\[\bar{g} = \frac{1}{V} \int_V g_a(\theta, r) dV. \]
Escape probabilities for the photon from accelerating region

\[P_e(r, \theta) = \exp[-\tau(r, \theta)] \]

Escape probability at location \(r, \theta \)

\[\bar{\tau} = \frac{r_{ph}}{r} \]

Photospheric optical depth

\[\tau_2 = \int_0^{s_0} \Gamma(1 - \nu \cos \theta_s)n'_e \sigma ds \]

Angular optical depth

\[\tau = \min(\tau_1, \tau_2) \]

\[P(r, \theta) = 1 - \exp[-\tau(r, \theta)] \]

Probability for next scattering at location \(r, \theta \) without escape

Figure 2. Lorentz factor (\(\Gamma \)) profile of the jet characterized by equation 13 with parameters \(p = 2.0, \theta_i = 0.01 \) rad, \(\Gamma_0 = 100 \) and \(\Gamma_{\min} = 1.2, \theta_\ast = \theta_\ast \Gamma_0^{1/p} \). The inner jet region is for \(\theta < \theta_\ast \) while outer region extends beyond \(\theta_\ast \). The region bounded within \(\theta_i - \theta_\ast \) harbours an effective velocity shear leading to photon energy gain.
Averaged probabilities from the accelerating region

The average probability of the photon to have a scattering without escape within the jet is the probability $P(r, \theta)$ averaged over the available volume V of scattering where velocity shear is present, i.e.,

$$\bar{P} = \frac{1}{V} \int_V P(r, \theta) dV.$$
Generation of power law spectrum at high energies

After scattering \(k \) times, there are \(N \) photons left out of \(N_0 \) photons in the accelerating region while \(N_0 - N \) have escaped,

\[
\frac{N}{N_0} = \tilde{P}^k \quad \text{or} \quad \ln \frac{N}{N_0} = k \ln \tilde{P}
\]

After \(k \) cycles, the photon’s energy is

\[
\varepsilon_k = \varepsilon_i \tilde{g}^k \quad \text{or} \quad \ln \frac{\varepsilon_k}{\varepsilon_i} = k \ln \tilde{g}
\]
Generation of power-law shaped spectra at high energies

\[
\ln \frac{N}{N_0} = \ln \frac{\varepsilon_k}{\varepsilon_i} \cdot \ln \bar{P} \cdot \ln \bar{g}
\]

\[
\frac{N}{N_0} = \left(\frac{\varepsilon_k}{\varepsilon_i} \right)^{\beta'}
\]

\[
\beta' = \frac{\ln \bar{P}}{\ln \bar{g}}
\]

\[
\frac{dN}{d\varepsilon_1} = N_0 \beta' \varepsilon_1^{\beta' - 1}
\]

\[
\beta = \beta' - 1 = \frac{\ln \bar{P}}{\ln \bar{g}} - 1
\]

We supply \(P \) and \(g \) for calculating the spectral slopes at high energies.
2. Numerical simulations

Numerical Code:

- The numerical simulations are based upon Monte Carlo method.
- We inject around 6 million photons deep inside the jet. Each of the photon goes through multiple scattering within the shear layers before it escapes.
- The escaped photons’ population is distributed then into bins of observing angles as well as energies.
- These binned photons produce the observed light curves as well as the spectrum for the given parameters.
Results:
Simulated spectrum
(On axis observer)

\[\Gamma(\theta) = \Gamma_{\text{min}} + \frac{\Gamma_0}{\sqrt{\left(\frac{\theta}{\theta_\text{i}}\right)^{2p} + 1}} \]

Figure 2. Lorentz factor (Γ) profile of the jet characterized by equation 13 with parameters \(p = 2.0, \theta_\text{i} = 0.01 \text{ rad}, \Gamma_0 = 100 \) and \(\Gamma_{\text{min}} = 1.2, \theta_\text{e} = \theta_\text{i}\Gamma_0^{1/p} \). The inner jet region is for \(\theta < \theta_\text{i} \) while outer region extends beyond \(\theta_\text{e} \). The region bounded within \(\theta_\text{i} - \theta_\text{e} \) harbours an effective velocity shear leading to photon energy gain.

High energy tail produced by scattering within the shear layers
Simulated Spectra: Continued
Results: Analytic slopes and comparison with Monte Carlo Simulations

\[\beta = \beta' - 1 = \frac{\ln \bar{P}}{\ln \bar{g}} - 1 \]

- Asymptotic slopes reach at -1.5 as \(p \to \infty \)
- For small and finite values of \(p \ (<2) \), the spectra vanishes due to geometric expansion of the jet
- The obtained range of \(\beta \) is compatible with the observed values
There are several other possible cases where such mechanism takes place

- A fast rotating star and its layers at the outskirts
- Relativistic turbulent plasma where there is a sharp velocity gradient in the turbulent eddies
- Sharply accelerating or decelerating relativistic jets/winds
Conclusions and Significance

Such power laws are capable of explaining high energy tails observed in GRB prompt phase spectra where β ranges between -3 and -1.5. We found the theoretical range $-\infty$ to -1.5.

Inversely, we show that using the observed values of β, we can directly constraint the jet structure of these bursts.

The mechanism is important for emission from other such objects like AGNs or X-ray binary jets, fast spinning compact stars, accretion discs with velocity gradient etc. We will explore these possibilities in future.

Vyas and Pe’er, ApJL 943-1, L3, 7