HEPRO VIII : High Energy Phenomena in Relativistic Outflows

γ-ray narrow-line Seyfert 1 galaxies: first long-term optical, UV, and X-ray monitoring

Stefano Vercellone (INAF – OA Brera) Patrizia Romano , Luigi Foschini & Sara Baitieri (INAF- OA Brera)

Paris, 23-26/10/2023

stefano.vercellone@inaf.it

Narrow-line Seyfert 1 galaxies Monitoring of the *golden four* sample Absorbed jet in SDSS J164100.10+345452.7

S. Vercellone – HEPRO VIII – Paris, 23-26/10/2023

Narrow-line Seyfert 1 galaxies Monitoring of the *golden four* sample Absorbed jet in SDSS J164100.10+345452.7

S. Vercellone – HEPRO VIII – Paris, 23-26/10/2023

NLS1 – an introduction

Narrow-line Seyfert-1 galaxies are a subclass of active galactic nuclei with

- narrow permitted emission lines
 FWHM(Hβ) < 2000 km s⁻¹
- weak [O III] lines
 - [OIII] / Ηβ < 3
- strong optical Iron emission lines
 - high Fe/Hβ ratio
- low-mass black hole (10⁶ 10⁸ M_o) accreting close to the Eddington limit

S. Vercellone – HEPRO VIII – Paris, 23-26/10/2023

About **40 sources** have being revealed to emit above 100 MeV [Romano+18, Foschini+22]

[Foschini+09]

No positive detection in the very-high energy band by Whipple, VERITAS, MAGIC, and H.E.S.S.

About 7% are radio-loud [Komossa+06] [Cracco+16] and present flat radio spectrum [Oshlack+01, Zhou+03, Yuan+08] resembling jetted sources

Where do γ NLS1 sit?

Type 1 QUASAR

OLD High BH mass

High luminosity

High jet power

YOUNG

Low BH mass

Low luminosity Low jet power

Type 2 QUASAR

FR HERG

Berton+17

New classes of jetted sources?

- $M_{bh} \sim 10^6 10^8 M_{Sun}$
- High accretion lum. ~ 0.1 1 L_{Edd}
- Low jet power ~ 10⁴² 10⁴⁶ erg s⁻¹
- Photon-rich environment
- Super-luminal radio jets (~10c)
- Hosted in disc galaxies S. Vercellone HEPRO VIII Paris, 23-26/10/2023

Monochromatic radio luminosity functions of flat-spectrum **NLS1s** and **FSRQs** at 1.4 GHz

Low-mass tail of FSRQs NLS1s as young sources?

Narrow-line Seyfert 1 galaxies Monitoring of the *golden four* sample Absorbed jet in SDSS J164100.10+345452.7

S. Vercellone – HEPRO VIII – Paris, 23-26/10/2023

Why X-ray monitoring of γNLS1s ?

- These sources have been observed by Swift mainly as followup of flares at other wavelengths
- This introduces a bias in the understanding of their variability behavior and duty-cycle because they favor high states
- We started our project with a sample of **4 well-known** γ**-NLS1s**:
 - SBS 0846+513
 - PMN J0948+0022 🛌
- Good VHE candidates ! [Romano+20]
- PKS 1502+036
- FBQS J1644.9+2619

The "Master Plan": <u>a regular pace</u>

- 1 observation per week
- 3 ks each observation
- 1 year baseline each source
- 5-year duration in total
- Optical + UV + X-ray
- PIs: Vercellone + Romano

Romano et al., to be submitted

VIII - P

MWL light-curves (2)

Time [MJD]

F ISTITUN

Time [MJD]

) VIII – P

Fractional Variability

Table 1: Fractional variability values for SBS 0846+513, PMN J0948+0022, PKS 1502+036, and FBQS J1644+2619.

UV-filter/X-ray/ γ -ray band	$\mathrm{F_{var}^{camp}}$	$F_{var}^{alldata}$	
SBS 084	6+513		
v	0.16 ± 0.07		
b	0.13 ± 0.07		
u	0.11 ± 0.08		
w1	0.021 ± 0.3		
m2	0.22 ± 0.04		
w2	0.13 ± 0.04		
$0.3 10 \mathrm{keV}$	0.13 ± 0.07		
$> 100 { m MeV}$	_	1.05 ± 0.23	
PMN J094	48 + 0022		
v	0.09 ± 0.07		
b	0.10 ± 0.04		
u	0.07 ± 0.02		
w1	0.16 ± 0.02		
m2	0.05 ± 0.03		
w2	0.18 ± 0.01	_	
$0.3{-}10\mathrm{keV}$	0.40 ± 0.03		
$> 100 { m MeV}$	-	0.40 ± 0.09	۱
PKS 150	2+036		
v	0.07 ± 0.13		
b	0.07 ± 0.06		
u	0.09 ± 0.03		
w1	0.11 ± 0.02		
m2	0.13 ± 0.02	•	
w2	0.14 ± 0.01		
$0.310\mathrm{keV}$	0.04 ± 0.16		
$> 100 \mathrm{MeV}$	_	0.32 ± 0.08	
FBQS J16	44 + 2619		
v	0.17 ± 0.02		
b	0.19 ± 0.01		
u	0.16 ± 0.01		
w1	0.17 ± 0.01		
m2	0.17 ± 0.01		
w2	0.15 ± 0.01		
$0.3-10\mathrm{keV}$	0.34 ± 0.01		
$> 100 \mathrm{MeV}$	_	0.53 ± 0.14	- p
			- 8

Still missing:

- Analysis of the archival data
- Estimate of the bias introduced by flaring events on variability and duty-cycle

Bayesian Blocks for X-ray LCs

Only two sources undergo flares over a 1-yr campaign

We will include all the available data and update the analysis

S. Vercellone - HEPRO VIII - Paris, 23-26/10/2023

Narrow-line Seyfert 1 galaxies Monitoring of the *golden four* sample Absorbed jet in SDSS J164100.10+345452.7

S. Vercellone – HEPRO VIII – Paris, 23-26/10/2023

SDSS J164100.10+345452.7

- nearby γNLS1 (z = 0.16409 ± 0.00002) [Albareti+17]
- hosted in a spiral galaxy [Olguín-Iglesias+20]
- initially classified as radio-quiet
- then detected at v = 37 GHz with F = 0.46 Jy [Lähteenmäki+18]
- and at E>100 MeV with F = (12.5 ± 2.18) x 10⁻⁹ ph cm⁻² S⁻¹ [Lähteenmäki+18]
- \rightarrow presence of a jet !
- → started a 2-yr Swift + Metsähovi monitoring campaign

MWL Campaigns

Grey vertical dashed areas mark the epochs of radio flares

S. Vercellone – HEPRO VIII – Paris, 23-26/10/2023

Time-selected X-ray spectroscopy

Average spectrum

- ~181 ks
- absorbed power-law model
- photon index Γ = 1.93±0.12
- requires a partially covering neutral absorber (panel d)
- tbabs * zpcfabs * zpowerlw
- covering fraction *f* = 0.91±0.02

<u>Flare spectrum (MJD 58994–58997)</u>

- ~3.5 ks
- does not require any such extra absorber
- much harder ($\Gamma_{flare} \sim 0.7 \pm 0.4$)
- Possible interpretation: jet emission emerging from a gap in the absorber

Spectral energy distribution

- first almost simultaneous SED for this source
- ≈ of other jetted sources, hint of a double-humped shape
- synchrotron peak below $v_{peak} \approx 10^{13}$ Hz, typical of other γ NLS1s
- host galaxy component peaking at a few ×10¹⁴ Hz (≈ Sb template)
- X-ray data ~ synchrotron self-Compton component [e.g., Foschini+15]

Variability & Energetics

	ObsID		Snapshot		
Filter	$F_{\rm var}^{\rm camp}$	$F_{\rm var}^{\rm full}$	$F_{\rm var}^{\rm camp}$	$F_{\rm var}^{\rm full}$	
V	_	_	_	_	
В	0.09 ± 0.01	0.09 ± 0.01	0.10 ± 0.02	0.11 ± 0.01	
U	0.04 ± 0.06	_	0.02 ± 0.11	_	
W1	0.13 ± 0.04	0.13 ± 0.04	_	_	
M2	_	_	_	_	
W2	0.07 ± 0.05	0.07 ± 0.05	0.11 ± 0.06	0.10 ± 0.06	
		0.1.5 0.00	0.11 . 0.04	0.12 + 0.04	
X-ray	0.16 ± 0.03	0.16 ± 0.03	0.11 ± 0.04	0.13 ± 0.04	
X-ray	0.16 ± 0.03	0.16 ± 0.03	0.11 ± 0.04	0.13 ± 0.04	
X-ray	0.16 ± 0.03	0.16 ± 0.03	0.11 ± 0.04	0.13 ± 0.04	
X-ray D/R	$\frac{0.16 \pm 0.03}{\frac{0.05}{R}}$	0.16 ± 0.03	0.11 ± 0.04	$\frac{13 \pm 0.04}{D}$	
<u>X-ray</u> <u>D/R</u>	0.16 ± 0.03 $\frac{Obs}{R}$ 1.25	0.16 ± 0.03 sID D 1.70	$\frac{0.11 \pm 0.04}{\text{Snap}}$ $\frac{\text{Snap}}{R}$ 0.053	$\frac{0.13 \pm 0.04}{D}$	
$\frac{X - ray}{D/R}$	0.16 ± 0.03 $\qquad \qquad $	0.16 ± 0.03 sID D 1.70 3.2	$\frac{Snap}{R}$ 0.053 5.0	$\frac{0.13 \pm 0.04}{D}$ 5.90 4.7	
$\frac{X-ray}{D/R}$ $\frac{D/R}{\tau_{d}}$ $\sigma(\tau_{d})$ $CR(t_{1})$	0.16 ± 0.03 0.16 ± 0.03 0.16 ± 0.03 0.05	0.16 ± 0.03 sID D 1.70 3.2 0.029 \pm 0.004	$\frac{\text{Snap}}{R}$ 0.053 5.0 0.012 ± 0.003	$\frac{0.13 \pm 0.04}{D}$ 5.90 4.7 0.017 ± 0.006	
$\frac{X-ray}{\frac{D/R}{\tau_{d}}}$	0.16 ± 0.03 0.16 ± 0.03 0.05 R 1.25 3.9 0.015 ± 0.004 0.031 ± 0.010	$\frac{0.16 \pm 0.03}{D}$ 1.70 3.2 0.029 \pm 0.004 0.015 \pm 0.004	$\frac{\text{Snap}}{R}$ 0.053 5.0 0.012 ± 0.003 0.027 ± 0.006	$\frac{1}{5.90}$ 4.7 0.017 ± 0.006 0.045 ± 0.013	
$\frac{X\text{-ray}}{\frac{D/R}{\tau_{d}}}$	0.16 ± 0.03 0.16 ± 0.03 R 1.25 3.9 0.015 ± 0.004 0.031 ± 0.010 59009.9084	0.16 ± 0.03 sID D 1.70 3.2 0.029 ± 0.004 0.015 ± 0.004 59008.3476	0.11 ± 0.04 Snap <i>R</i> 0.053 5.0 0.012 ± 0.003 0.027 ± 0.006 59259.6634	$\frac{1}{5.90}$ $\frac{1}{4.7}$ $\frac{1}{0.017 \pm 0.006}$ $\frac{1}{0.045 \pm 0.013}$ $\frac{1}{59371.5824}$	

Parameter	Value	Units
$M_{\rm DH} \stackrel{(a)}{}$	1.41	$\times 10^7 M_{\odot}$
$L_{\rm H\beta}$	2.51	$\times 10^{41} {\rm erg s^{-1}}$
L _{Edd}	1.8	$\times 10^{45} {\rm erg s^{-1}}$
$L_{\rm disc}$	6.8	$\times 10^{43} {\rm erg s^{-1}}$
$L_{\rm disc}/L_{\rm Edd}$	0.04	_
$R_{\rm BLR}$	2.6	×10 ¹⁶ cm
$L_{\rm BLR}$	5.3	×10 ⁴² erg s ⁻¹
$u_{\rm BLR}$	0.02	$erg cm^{-3}$
$\alpha_{1.6-5.2\mathrm{GHz}}$	1.04	_
$\alpha_{5.2-9.0\mathrm{GHz}}$	1.24	—
$\alpha_{9.0-37\mathrm{GHz}}$	-4.92	—
$S_{15\mathrm{GHz}}$	4.33	mJy
$L_{15\mathrm{GHz}}$	1.95	×10 ⁴⁰ erg s ⁻¹
$P_{\rm iet}^{\rm rad}$	1.65	$\times 10^{42} {\rm erg s^{-1}}$
$P_{\text{iet}}^{\text{kin}}$	1.83	$\times 10^{42} {\rm erg s^{-1}}$
P_{jet}^{tot}	3.48	$\times 10^{42} {\rm erg s^{-1}}$

F_{var} (ToO excluded) is lower than in [D'Ammando+20], since we are not flare-biassed

t'_{var}(obs) ~ 0.75d t'_{var}(snap) ~ 0.034d SDSS 1641 fits well in the γ NLS1 part of the plane $L_{disc}/L_{edd} - M_{BH}/M_{\odot}$ [adapted from Foschini+15]

P_{jet}(tot) is at the lower-end among the typical γNLS1 ones

- Dedicated multi-wavelength campaigns allow us to derive firmer constraints on the variability behavior of γNLS1
- On a year-based campaign, we can estimate a number of Xray flares 0 < N_{X-ray} < 4 (analysis still in progress)
- Thanks to the long-baseline X-ray and radio monitoring, we have detected the **first possible evidence of an absorbed jet** in SDSS J164100.10+345452.7 [see Romano et al., A&A 673, A85 (2023)]

amplitude variability

 Flares up to a factor of ~100 in days

• X-ray rapid, large

 Doubling times as short as minutes

22

NLS1 galaxies ("X-ray" definition, > ca1995)

NLS1 galaxies ("X-ray" definition)

- Steep soft X-ray continuum slopes
 - Photon Index $\Gamma \approx 2.44$ (P_E $\propto E^{-\Gamma}$)
 - Soft excess
 EW ~ 94 eV
 - Fe Kα
 Peak at 6.8 keV
 EW ~ 600 eV

a relatively low-mass black hole (10⁶ - 10⁸ M_☉) accreting close to the Eddington limit

NLS1 galaxies as HE sources?

The smoking gun observed by *Fermi*

- Discovery of gamma-ray emission (E>100MeV) with *Fermi*-LAT from PMN J0948+0022 [Abdo+2009a, Foschini+2010]
- The SED fit with the model by [Ghisellini & Tavecchio 2009] clearly resembles that of a blazar-like source

γ-NLS1 timescale variability

Gamma-ray emission is variable too, on time-scale as low as a few hours [Abdo+09b, Calderone+11, Paliya+14]

γ-NLS1 sample

- 20 sources have been recently discovered as gamma-ray emitters.
- VERITAS observations (5.25 h) on PMN J0948+0022 allowed to obtain only UL (also on nightly and 30m time-scales) for E>100 GeV.

An exploratory investigation

 Detecting high-energy (E > a few tens of GeV) emission from NLS1 galaxies is challenging because:

- They have an average rather soft spectrum (Γ ~2.5);
- Some of them have rather high redshift (z > 0.3)
 - \rightarrow high absorption by extragalactic background light (EBL)
- If broad-line region absorption is present, it could produce a spectral break/cut-off at energies of 20-30 GeV.

• On the bright side:

- Some sources exhibit rather strong gamma-ray flares, on time-scale of the order of a few hours/a day in gamma-rays (PMN J0948+0022 [Foschini+11, D'Ammando+15]).
- The high-state activity can last for several weeks/months, repeated on a multi-year baseline (SBS 0846+513 [Paliya+16])

Simulating y-NLS1s with CTA

Romano et al 2018, MNRAS, 481, 5046 (Paper I)

Sample of **20 sources** (**4 sources** in several intensity states) simulated with *ctools* (v1.4.2) **[Knödlseder+16]**

- IRFs were selected according to the simulated exposure time & zenith angle
- Input spectral models were derived extrapolating the best-fit Fermi spectra to the CTA energy range (PL=power-law, LP=log parabola, BKPL=broken PL)
- including the effects of the gamma-ray absorption both
 - inside the source (PL + <u>Exponential cut-off at ~30 GeV</u>) and
 - the EBL [Dominguez+11]

Detailed results for **3 sources**:

SBS 0846+513, PMN J0948+0022, and PKS 1502+036

29

In blazars the γ -ray emitting region may not always be placed at the same distance from the central black-hole during different flaring episodes of the same source **[Foschini+2011b]**.

Detection of TeV photons **[Albert+08, Ahnen+15]** and the dramatic change of the position of the sync. & IC peaks in some blazars during extreme flares **[Ghisellini+13, Pacciani+14, Ahnen+15]** support the idea of a **dissipation region outside the BLR**.

Investigated the **impact of the position of the emitting region** on the detectability assuming that the **spectrum can extend unbroken** above 30 GeV.

More realistic BLR absorption models

Romano et al 2020, MNRAS, 494, 411 (Paper II)

We consider the only three souces that were good candidates for a perspective CTA detection **SBS 0846+513, PMN J0948+0022, and PKS 1502+036**

Simulate their spectra by adopting **more realistic BLR absorption models**.

In particular, we consider the **detailed treatment of γ-γ absorption** in the radiation fields of the BLR of these NLS1s **as a function of the location of the γ-ray emission region** as proposed by **Böttcher & Els+2016**

Gamma-gamma absorption (Böttcher & Els 2016)

Spherical, homogeneous shell BLR emitting within R_{in} and R_{out}

$$R_{\rm in} = 0.9 R_{\rm BLR} \qquad R_{\rm out} = 1.1 R_{\rm BLR}$$

Constraints on L_{BLR} and u_{BLR} from **direct observations**

Source Name	State	$\mathbb{L}_{\mathrm{H}\beta}^{a}$	Ldisc
		[Fosch	ini+2015]
SBS 0846+513	High	1.32	3.94
PMN J0948+0022	High	3.73	11.8
	"Flare"	-	-
PKS 1502+036	High	0.41	1.12

^a x10⁴² erg s⁻¹. ^b x10⁴⁴ erg s⁻¹.

 $R_{\rm BLR} = 3 \times 10^{17} L_{\rm disc, 45}^{1/2} \text{ [cm] [Bentz+2009]} \qquad u_{\rm BLR} = \frac{L_{\rm BLR}}{4\pi R_{\rm BLR}^2 c} \text{ [erg cm}^{-3}\text{]}$

Gamma-gamma absorption (Böttcher & Els 2016)

BLR properties adopted for the γ - γ absorption grids

Source Name	$L_{\rm BLR}$ (erg s ⁻¹)	$R^a_{\rm BLR}$ (cm)	$u_{\rm BLR}$ (erg cm ⁻³)	R_{in}^a (cm)	R^a_{out} (cm)
SBS 0846+513	2.8×10^{43}	1.87	2.12×10^{-3}	1.69	2.06
PMN J0948+0022	7.91×10 ⁴³	3.26	1.98×10^{-3}	2.93	3.58
PKS 1502+036	8.69×10 ⁴²	1.00	2.29×10^{-3}	0.90	1.10

^{*a*}Radii in units of $\times 10^{17}$ cm.

Grid of models for a range of R_{em}<<R_{in} to R_{em}>>R_{out}, including:

Tailored for each source

 $R_{\rm in} = 0.9 R_{\rm BLR}$ $R_{\rm out} = 1.1 R_{\rm BLR}$

(i)
$$r_1 \gg R_{\text{BLR}}$$
,
(ii) $r_2 = 2 R_{\text{BLR}}$,
(iii) $r_3 = R_{\text{out}}$,
(iv) $r_4 = R_{\text{in}}$,
(v) $r_5 \ll R_{\text{in}}$.

S. Vercellone - HEPRO VIII - Paris, 23-26/10/2023

Input models (BLR+EBL)

33

CTA can locate the gamma-ray emitting region

S. Vercellone – HEPRO VIII – Paris, 23-26/10/2023

