Mereology of Relativistic Blast Waves - Heating, Acceleration, and Radiation -

Arno Vanthieghem

HEPRO VIII: High Energy Phenomena in Relativistic Outflows

23 – 26 Oct. 2023 Paris, France

Thanks to:

M. Lemoine (IAP), L. Gremillet (CEA), G. Pelletier (IPAG),

A. Spitkovsky (Princeton), F. Fiuza (IST), V. Tsiolis (Princeton), J. Parsons (Princeton), Y. Todo (NIFS), K. Sekiguchi (NINS)

Non-thermal spectra in extreme astrophysical environments originates from collective plasma effects

$\lambda \simeq L$

(dynamical scale)

Motivations

Self-consistent dynamics of extreme astrophysical environments

- Self-generation and amplification of magnetic field
- Partition of energy between species
- Mechanisms of particle acceleration and feedback
- \Rightarrow kinetic description of the plasma process (Particle-In-Cell here)

Relativistic ejecta from binary neutron star mergers – A rich source of information for extreme plasma physics

2.

NASA's Goddard Space Flight Center/Cl Lab; LIGO & Virgo /Georgia Tech/S. Ghonge & K. Jani; Mahkatini et al., 2020

Physics and Phenomenology of Collisionless Blast Waves

Structure of a relativistic collisionless shock wave in an unmagnetized environment

A general picture in the shock front frame

- Accelerated beam
- Microturbulent (+ coherent) EM field

Relativistic collisionless shock wave

The interplay between a beam of Fermi-accelerated particles and the background plasma generates an electromagnetic microturbulence at kinetic scales

Cosmic ray-modified shock – Deceleration of the background flow through the beam ram pressure

Lemoine, Vanthieghem, Pelletier, Gremillet, Phys. Rev. E (2019)

- System composed of background plasma + suprathermal particles + electromagnetic turbulence
- Conservation of energy-momentum

$$\partial_{\mu} \left(T^{\mu\nu} + T^{\mu\nu}_{\rm b} + T^{\mu\nu}_{\rm EM} \right) = 0$$

 Electromagnetic turbulence hardly contributes to the fluid conservation equations

Background plasma deceleration law

Lorentz factor $\, \gamma_p \propto \xi_b^{-1/2} \,$

Lorentz factor of background flow

Pressure of accelerated particles

with

$$\xi_b = P_b / \mathcal{F}_{\infty}$$

 $m{P}_b$ - Suprathermal particle pressure $m{\mathcal{F}}_\infty$ - Incoming ram pressure

The pressure of the beam is mediated to the background by the microturbulence.

Background plasma Lorentz factor

The turbulence is magnetically dominated, and drifts close to the electron/positron bulk velocity

Pelletier, Gremillet, Vanthieghem, Lemoine, Phys. Rev. E (2019)

The turbulence frame: the Weibel frame

• The Weibel instability dominates the precursor of the shock

$$\Rightarrow \boldsymbol{E}^2 - \boldsymbol{B}^2 < 0$$

• At each point, one can define a local quasi-magnetostatic reference frame $\mathcal{R}_{w}^{1,2}$

$$\Rightarrow u_{w} \sim \frac{E \times B}{B^{2}} \sim \frac{\omega}{k} \frac{\epsilon_{xy}}{\epsilon_{yy}} \sim u_{e}$$

• Electrons drift close to the Weibel frame in the shock precursor

The decelerating turbulence introduces a noninertial force leading to nonadiabatic heating of the plasma

Lemoine, Vanthieghem, Pelletier, Gremillet, Phys. Rev. E (2019)

Semi-dynamical approach to electron-ion transport

For a white noise with isotropic scattering, the transport equation reduces to

$$\dot{\boldsymbol{p}}^{i} = \left(\boldsymbol{p} \cdot \delta \widehat{\boldsymbol{\Omega}}_{t} \right)^{i} - \Gamma_{ab}^{i} p^{a} \beta^{b}$$
1. 2.

1. **Pitch-angle scattering:** Gaussian white-noise process In the scattering center frame

$$<\delta\widehat{\Omega}_t> = 0 \qquad <\delta\widehat{\Omega}_t \ \delta\widehat{\Omega}_{t'}> = 2 \ \delta(t'-t)$$

2. Stationary scattering center frame deceleration

 $\partial_x u_w \neq 0$

Successfully accounts for plasma heating in relativistic pair plasmas

 \Rightarrow Linear Fokker-Planck equation

$$\sim \partial_x f + \cdots \frac{du_w}{dx} \partial_p f + \cdots \partial_p (D_{pp} \partial_p f) = 0$$

$$D_{pp} \propto \frac{1}{\nu} \left(\frac{du_w}{dx}\right)^2$$

Joule-type heating cannot account for the electron temperature in electron-ion collisionless shocks

Lemoine, Vanthieghem, Pelletier, Gremillet, Phys. Rev. E (2019)

Semi-dynamical approach to electron-ion transport

For a white noise with isotropic scattering, the transport equation reduces to

$$\dot{\boldsymbol{p}}^{i} = \left(\boldsymbol{p} \cdot \delta \widehat{\boldsymbol{\Omega}}_{t}\right)^{i} - \Gamma_{ab}^{i} p^{a} \beta^{b}$$

1. **Pitch-angle scattering:** Gaussian white-noise process In the scattering center frame

$$<\delta \widehat{\Omega}_t > = 0 \qquad <\delta \widehat{\Omega}_t \ \delta \widehat{\Omega}_{t'} > = 2 \ \delta(t'-t)$$

2. Stationary scattering center frame deceleration

 $\partial_x u_w \neq 0$

Comparison between model and numerical simulation

Collisionless friction with the Weibel-mediated turbulence leads to pure adiabatic compression of the electrons

Free parameters: $\overline{\nu, L_{sh}}$

What is the source of strong electron energization?

• Modeling of gamma-ray burst afterglows indicate equipartition between electrons and ions – Freedman+2001

$$E_e \sim E_i \Rightarrow \langle \gamma_e \rangle \sim rac{m_i}{m_e} \langle \gamma_i
angle \sim 10~{
m GeV}$$

- Equipartition observed in PIC simulations Spitkovsky 2008; Martins et al., 2009, Haugbölle 2011, Sironi 2011
- Different sources of electron heating in the microturbulence have been identified – Milosavljevic et al., 2006; Gedalin et al., 2008; Gedalin et al., 2012; Plotnikov et al., 2013; Kumar et al., 2015

Differential scattering of electrons and ions off of a decelerating turbulence leads to ambipolar heating

Vanthieghem, Lemoine, Gremillet, ApJ Lett. (2022)

Semi-dynamical approach to electron-ion transport

For a white noise with isotropic scattering, the transport equation reduces to

$$\dot{\boldsymbol{p}}^{i} = \left(\boldsymbol{p} \cdot \delta \widehat{\boldsymbol{\Omega}}_{t}\right)^{i} - \Gamma_{ab}^{i} p^{a} \beta^{b} + q E_{\parallel}$$
1. 2. 3.

1. **Pitch-angle scattering:** Gaussian white-noise process In the scattering center frame

$$<\delta\widehat{\Omega}_t> = 0 \qquad <\delta\widehat{\Omega}_t \ \delta\widehat{\Omega}_{t'}> = 2 \ \delta(t'-t)$$

2. Stationary scattering center frame deceleration

 $\partial_x u_w \neq 0$

3. Poisson solver: self-consistent solution to the electrostatic fieldIn the shock front frame

 $\nabla^2 \phi = -4 \pi \rho$

Free parameters: $\overline{\nu, L_{sh}}$

Electric field induced by charge separation in a decelerated plasma

 \Rightarrow Linear Fokker-Planck equation

$$\sim \partial_x f + \cdots \frac{du_w}{dx} \ \partial_p f + \cdots \partial_p \left(D_{pp} \ \partial_p f \right) = 0$$

$$\underbrace{D_{pp}^e \propto \frac{1}{\nu} \left(\frac{2}{3} \frac{du_w}{dx} + \frac{q E_{\parallel}}{p} \right)^2 \sim \frac{1}{\nu} \left(\frac{q E_{\parallel}}{p} \right)^2}_{2}$$

Particle-In-Cell simulations (Calder)

$$\gamma = 173; m_i/m_e = 25 \quad \gamma = 173; m_i/m_e = 100 \quad \gamma = 17; m_i/m_e = 100$$

Energy-dependent pitch-angle scattering frequency is fundamental to electron-ion equipartition

 $\lambda \sim d_{o}$

Vanthieghem, Lemoine, Gremillet, ApJ Lett. (2022)

The scattering frequency of the electron varies by order of magnitude from the far upstream to the shock transition

 $\lambda \sim d_e \sim d_i \quad \Leftarrow$

Comparison between the scattering frequency estimated from kinetic simulations and by solving the transport equation (shaded area)

The radiative signature consistent with ambipolar heating in a decelerating microturbulence

Vanthieghem, Lemoine, Gremillet, ApJ Lett. (2022)

Monte Carlo pitch-angle scattering in a decelerating turbulence couple to a self-consistent Poisson solver

Blue/Red : Reconstructed trajectories of ions and electrons from the transport equation

Red : T_e from theoretical model with longitudinal electrostatic field

 \Rightarrow Overall, satisfactory reconstruction of velocity and temperature, with electron heating up to equipartition

Ambipolar heating accounts for the energy partition in the nonrelativistic regime of blast waves

Vanthieghem, Tsiolis, Spitkovsky, Todo, Skiguchi, Fiuza, To be submitted

Theory

 $u_{sh}=0.075; \mathrm{m_i}=49~\mathrm{m_e}$ (Tristan-mp)

For strongly magnetized electrons and weakly magnetized ions

$$\Rightarrow \frac{T_e}{T_i} \sim 0.2 - 0.5$$

Weibel-mediated shock naturally leads to efficient electron heating

$$m_i = 49 m_i; v_i = \frac{|u_{\infty}|}{L_{sh}}; v_e = \frac{m_i v_i}{m_e}; L_{sh} = 150 \frac{c}{\omega_{pi}}$$

The upstream turbulence dictates the acceleration timescale for the nonthermal injected particles

Injection of ~1% of particles in number and ~10% in energy \Rightarrow See A. Spitkovsky's talk

Parsons, Spitkovsky, Vanthieghem, submitted, 2023

Lemoine, Pelletier, Vanthieghem, Gremillet, Phys. Rev. E (2019)

Downstream turbulence

• Isotropic in the suprathermal particle frame

$$\Rightarrow l_{scatt}(p) \sim \epsilon_B^{-1} \left(\frac{p}{\gamma_{\infty} m c}\right)^2 c/\omega_{f}$$

Upstream turbulence

Strongly anisotropic in the suprathermal particle frame

$$\Rightarrow l_{scatt}(p) \sim \frac{\gamma_p}{\rho} \epsilon_B^{-1} \left(\frac{p}{\gamma_{\infty} m c}\right)^2 c/\omega_p$$

Retroaction of pair creation upstream of the shock from SSC photons emitted in the downstream

In Progress

Converter mechanism: efficient Fermi cycles via a neutral agent crossing the shock boundary. The Fermi accelerated pairs radiate SSC emission that cross the shock and pair produce in the upstream

Derishev et al., 2003, Stern 2003, Derishev & Piran 2016

Hydrodynamics with pair loading

In Progress

Stationary state with pair injection

- Fraction of energy collected by the plasma $\eta_{\pm} = \frac{2}{3} \frac{\dot{u}_{\pm} R}{\Gamma^3 w c}$
- Fraction of mass collected by the plasma

$$o_{\pm} = \frac{4}{3} \frac{\dot{n}_{\pm} R}{\Gamma^2 n m_p c}$$

- If $\eta_{\pm} \gg 1/\Gamma^2 \Rightarrow$ Affect the precursor dynamics
- If $\eta_{\pm} \gg 0.1 \Rightarrow$ No shock solution

Derishev, Piran, MNRAS, 2016

Regime

- t_{acc} is negligible compared to all other times
- $t_{acc} \ll t_{cool} \ll t_{dyn}$

$$R = 10^{17} \text{ cm}; \Gamma_{sh} = 100; n_0 = 1 \text{ cm}^{-3}; \epsilon_{\min} = 10^{-8}; \epsilon_{\max} = 10^4$$

Photon spectral index

Pair-loading leads to kinetic instabilities coupling species and affecting particle acceleration

In Progress

$\eta_{\pm} \gtrsim 1/\gamma^2$

- Coupling through Weibel instability
- Significant upstream heating
- Enhanced deceleration of the flow
- Reduced suprathermal particle injection

Summary

- Plasma deceleration obeys a cosmic-ray modified-type profile from the pressure of the accelerated particles
- The turbulence defines a preferential frame that is of non-inertial nature
- In pair plasma shock waves, the background heats non-adiabatically in a Joule-like process
- For electron-ion plasma, Weibel-mediated shocks efficiently heat electrons through ambipolar diffusion
- The acceleration timescale of the nonthermal particles is dominated by the upstream residence time
- Pair loading from SSC-photons radiated in the shock downstream modifies the shock structure and reduces the acceleration efficiency

Thank you!