

Ultra Fast Neutron Stars

Maria Victoria del Valle IAG Universidade de São Paulo

Flor Vieyro & Gustavo Romero

Stars with very high velocities

Hills Mechanism (Hills 1988)

Confirmation hyper velocity stars

Modified: Semi-relativistic hypervelocity stars SHS

V ~ 1⁄3 C

Implications

Mechanism produces SHS

Statistic indicates that the density is enough for detection at a few Mpc

The only mechanism such high velocities
Can be used as cosmological messengers

Stars evolve, becoming compact objects:

How can we detect a SH-neutron star?

Kinetic energy carried

M = 1.4 Msun

 $V = 40\,000 \,$ km/s

E_{kin} = 10^52 erg !

M = 1.4 Msun V = 100 000 km/s E_{kin} = 10^53 erg !

How can this energy be deposited into the ISM?

Kinetic energy carried

M = 1.4 Msun

 $v = 40\,000 \,$ km/s

E_{kin}= 10^52erg!

M = 1.4 Msun V = 100 000 km/s E_{kin} = 10^53 erg !

Particle Acceleration

Magnetic energy: Reconnection

Interaction with the medium

Non-rotating magnetized star, dipole

$$\frac{B_{\star}^2}{8\,\pi} \left(\frac{R_{\star}}{R}\right)^6 = \rho V_{\star}^2$$

$$R_{
m s} = \left(rac{B_{\star}^2}{8\,\pi
ho\,V_{\star}^2}
ight)^{1/6} R_{\star}$$

~ 2.5e4 Rstar

e.g., Toropina et al. 2001

Simulation initial conditions

Establishing a Steady State

Velocity

Sites for particle acceleration

➤ Bow shock

Shocks along the walls of the "jet"

Agnetic Reconnection occurs in multiple regions

Shear, turbulence, compression ...

Sites for particle acceleration

Shocks along the walls of the jet are weak

Power Budget & Maximum Energies: depends on the medium & velocity

Bow shock: accelerated particles are advected down

V = 4e4 km/s K_sh = 3e27 erg/s Rs = 2e10 cm B(Rs) = 0.08 G Emax,p = 0.6 TeV Emax,e = 62 MeV n = 10 1/cm³

Magnetic Reconnection occurs in several regions cylinder (1pc): 1e24 erg/s, 1e26 erg/s

Elongated structure

$\approx 1.43 \times 10^{-27} N_{\rm e} N_{\rm i} T^{1/2} V Z^2 g \, {\rm erg \, sec^{-1}}$

.e26, whole cloud 5e27 erg/s

Thermal emission

Pseudocolor 10 Var: 1 - 4.761e+08 - 1.255e+07 - 3.308e+05 - 8.718. Max: 1.806e+10 Max: 1.806e+10

Axis

-10-

-10

op ~ 1e8 K ightarrow

Cross section is too small

Thermal emission

⊤~ 1e8 K **→**

X-rays ionize the medium: radio, H-alpha

 $L_{\rm min} \approx 10^{-21} N_{\rm e} N_{\rm i} T^{-1/2} V Z^4 \, {\rm erg \, sec^{-1}}$

1e25, whole cloud 5e26 erg/s

Photons > 10 keV should be free to escape

Dense medium, molecular cloud: absorption -> optical, UV

Emission regions becomes wider!

Additional channel: Nonthermal emission

Compression → background CRs

$$n_{\rm ad}(p) = s^{2/3} n_{\rm acc}(s^{-1/3}p).$$

Enhancement of particles locally:

- Synchrotron + IC (CMB)
- P-F

Needs dense environment, competes with other processes

Summary

Our preliminary results show that:

- Interaction produces a "jet"
- Very hot gas, small emitting volume
- Particle acceleration: bowshock, reconnection, compression
- Weak radiation signal

Future work:

- Radiation transfer calculations, transport of relativistic particles.
- Explore relativistic flow effects (are they important?)
- Explore rotating star scenario, Rsr > 6e8 Rs !

Simulation initial conditions

3D cartesian Dipole: plane xy V = 40 000 km/s, z direction Mcs = 4000 Bs = 0.1 G Rs = 1e6 n_ism = 0.57 Cooling

Magnetic field

Pseudocolo Var: j2

Max: 1.430 Min: 3.190e

