Blazar jets: new clues and old challenges

Fabrizio Tavecchio (INAF-OAB, Italy)

Outline

New clues:

Clues on particle acceleration from X-ray polarization A stratified shock model for high synchrotron peak BL Lacs

Old challenges:

Extreme blazars: acceleration at recollimation shocks?

Jets: the fundamental questions

Jet dynamics, speed, composition, power

Magnetic fields, dissipation, acceleration and emission mechanisms

Formation, collimation, acceleration

e.g. Blandford et al. 2019 Blackman and Lebedev 2022

Particle acceleration: many places, several processes

Jets pointing at us: blazars

non-thermal continuum emission of the jet.

$$L_{\rm obs} = L' \delta^4 \qquad \delta = \frac{1}{\Gamma(1 - \beta \cos \theta_{\rm v})}$$

Synchrotron and IC in leptonic models.

Also hadronic scenarios (synchrotron or photo-meson emission)

One zone models

Beyond one-zone An incomplete list ...

HBLs: extreme accelerators

$$h\nu_{X} = 1 - 10 \text{ keV}$$
$$\gamma_{X} = \left(\frac{2\pi m_{e}c\nu_{X}}{eB\delta}\right)^{1/2} \sim 10^{5} - 10^{6}$$
$$ct_{\text{cool}} = 2.3 \times 10^{15} B_{-1}^{-2} \gamma_{X,6}^{-1} \text{ cm}$$

Compact regions

One zone modeling: results

Hígh electron Lorentz factors Low magnetic field (subequipartition)

Hints from IXPE (1)

and others in the pipeline

18

Magnetic fields at shocks

Compression

Self-generated field

Angelakis et al. 2016

Vanthieghem et al. 2020

Tavecchio et al. 2018, 2020

Tavecchio in prep.	Model	$\gamma_{ m cut}~(imes 10^5)$	n	$n_{e,0}$	$B_{\perp,0}$	B_{z}	$r_{\rm j}~(imes 10^{15})$	λ	m
Data from Lisalda et al., in prep.		[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	1	8.5	2.1	20	0.25	0.03	4.3	5×10^{13}	0.5
	2	12.6	2.2	30	0.25	0.03	4.8	1.2×10^{12}	0.25

Shock acceleration?

DSA can work efficiently only in weakly magnetized jets (e.g. Sironi+2015) This is consistent with SED modeling (e.g. FT+2016)

This is inconsistent with jet production models (e.g. Komissarov et al. 2009)

Matthews et al. 2020

Hints from IXPE: 2) limits to turbulence

Zhang et al. 2023

e.g. Marscher & Jorstad 2022

Hints from IXPE: 3) EVPA rotations

Mkn 421

x-ray region P vecto Helical & field Optical radio rea non-axysimmetric feature (e.g. shock) Marscher et al 2008, 2010

non-axysimmetric field

Koenigl & Choudhuri 1985

Observed during relatively high states

Di Gesu et al. 2023 See also Kim et al. 2023

LSP:

emission mechanisms and matter content

Zhang & Boettcher 2013

(One zone) Hadronic models predicts a relatively large polarization of the raising portion of the high-energy bump (synchrotron from protons and decay products) Constraining lower limits from IXPE (below optical)

Leptonic (SSC) preferred? Yes, but...

LSP:

emission mechanisms and matter content

Which kind of shock?

(mildy) relativistic shock \longrightarrow Sub-relativistic downstream (in the shock frame) Substantial beaming of the downstream emission \longrightarrow Large Γ of the shock in the observer frame if the shock is of normal incidence

?

Traveling relativistic shock $\Delta z \sim c \Delta t \Gamma_{\rm sh}^2 \approx 1 {\rm pc}$ In 1 day (observed)

Modeling provides consistent parameters even for very distant epochs (months)

Sokolov et al. 2004, 2005 Tagliaferri et al. 2008 Zech & Lemoine 2021

Recollimation shocks

2D símulations Chain of recollimation shocks

Instabilities

Rayleigh-Taylor/centrifugal + Richtmyer-Meskov instabilities

Costa et al. in prep

Matsumoto et al. 2017, 2021 Komissarov & Gougouliotos 2018 Abolmasov & Bromberg 2023

Instabilities

Low magn.

MHDjet

Sufficiently large B field can stabilize the jet

High magn.

Extreme BL Lacs

Costamante et al. 2001 Review in Biteau et al. 2020

Stawarz et al. 2004 Zech & Lemoine 2021

Extreme BL Lacs

Costamante et al. 2018

Source [1]	γ ₀ [2]	<i>n</i> ₀ [3]	γ ₁ [4]	γь [5]	γ ₂ [6]	<i>n</i> 1 [7]	<i>n</i> ₂ [8]	B [9]	<i>K</i> [10]	<i>R</i> [11]	δ [12]	U _e /U _B [13]	
1ES 0229+200 ^a 1ES 0229+200 ^b	-	_	$\begin{array}{c} 100\\ 2\times10^4\end{array}$	1.1×10^{6} 1.5×10^{6}	$\begin{array}{c} 2\times10^7\\ 2\times10^7\end{array}$	1.4 2.0	3.35 3.4	0.002 0.002	6 10 ³	0.8 2.1	50 50	1.7×10^{5} 2.0×10^{4}	

Extreme BL Lacs

Hard electron distribution from multiple shock crossing in a recollimating jet.

$$\frac{\mathrm{d}N_{>}^{(n)}}{\mathrm{d}\gamma_{>}} = \frac{(s-1)^{n+1}}{n!\,g^n\,\gamma_{\min}} \left(\frac{\gamma_{>}}{g^n\,\gamma_{\min}}\right)^{-s} \ln\left(\frac{\gamma_{>}}{g^n\,\gamma_{\min}}\right)^{n}$$

Stawarz et al. 2004 Zech & Lemoine 2021

But instabilities?

Extreme BL Lacs: low σ , unstable jets?

Tavecchio, Costa & Sciaccaluga 2022

Extreme BL Lacs: low σ , unstable jets?

Extreme BL Lacs: low σ , unstable jets?

But IXPE again...

 $\Pi_X = 18\%$ In the prototype 1ES 0229+200 Ehlert et al. 2023

The most polarízed BL Lac! Incompatible with turbulence?

Final thoughts

X-ray polarization of HSP: stratified shock? Need for realistic physical models!

Extreme blazars: acceleration at recollimation shocks? Better characterization of role of instabilities/turbulence in particle acceleration

Energizing the particles

Contopoulos 1994 Komissarov et al. 2009 Tchekhovskoy et al. 2009

Magnetic field generation at shocks

Polarimetry in the X-ray band

Possible alternatives and predictions

	Optical	Medium-Hard X-Rays			
Shock (turbulent)	$\Pi \lesssim 15\%$, variable; χ variable, smooth rotations possible	$\Pi \lesssim$ 30%, highly variable highly and rapidly variable			
Shock (self-produced field)	$\Pi \lesssim$ 20%, slowly variable, flips by $\Delta \chi =$ 90 deg	$\Pi \gtrsim 40\%$ substantially constant, constant $\chi = 0$			
Reconnection (kink-induced)	$\Pi \lesssim$ 20–30%, moderately variable smooth rotations, $\Delta \chi \gtrsim$ 90 deg	same as optical as optical			

Tavecchio 2021

Tavecchio et al. 2018, 2020

Tavecchio in prep.