Energetic Particle Acceleration in Relativistic Shearing Flows

Frank M. Rieger
HEPRO VIII @ IAP Paris
October 23, 2023

IP ITP Univ. Heidelberg

- Astrophysical Motivation \& Exemplary Context
- Extended high-energy emission in large-scale AGN jets
- Ubiquity of shearing flows
- Shear Particle Acceleration
- Focus on stochastic Fermi-type acceleration (basic idea)
- Particle transport, acceleration and power-law formation
- Modelling electron shear acceleration in large-scale jets
- On UHECR acceleration in shearing AGN flows
- Summary

On ultra-relativistic electrons in AGN Jets I

_Example: High-Energy Emission from large-scale jets

- extended X-ray electron synchrotron emission
- needs electron Lorentz factors $\gamma_{\mathrm{e}} \sim 10^{8}$

- short cooling timescale $\mathrm{t}_{\text {cool }} \propto \mathrm{I} / \mathrm{\gamma}_{\mathrm{e}}$; cooling length $\mathrm{c} \mathrm{t}_{\text {cool }} \ll \mathrm{kpc}$
- distributed acceleration mechanism required (Sun, Yang, FR, Liu \& Aharonian 2018 for M87)

On ultra-relativistic electrons in AGN Jets II

VHE emission along the kpc-jet of Cen \mathbf{A}

- Inverse Compton up-scattering of dust by ultrarelativistic electrons with $\gamma_{e}=10^{8}$
- verifies X-ray synchrotron interpretation
- continuous re-acceleration required to avoid rapid cooling

On ultra-relativistic electrons in AGN Jets II

VHE emission along the kpc-jet of Cen \mathbf{A}

- Inverse Compton up-scattering of dust by ultrarelativistic electrons with $\gamma_{e}=10^{8}$
- verifies X-ray synchrotron interpretation
- continuous re-acceleration required to avoid rapid cooling

[^0]How to accelerate electrons to $\gamma_{\mathrm{e}} \sim 10^{8}$ and keep them energized?

A possible scenario...

On the naturalness of velocity shears in AGN...

- Jet origin: BH-driven (BZ) jet \& disk-driven (BP) outflow... (e.g., Mizuno 2022)
- Jet propagation: instabilities, mixing, layer formation...
- Jet observations: limb-brightening \& polarisation signatures...
(e.g., Perucho 2019)
(e.g., Kim+ 20I8)
- M87: significant structural patterns on sub-pc scales
\Rightarrow presence of both slow ($\sim 0.5 c$) and fast ($\sim 0.92 c$) components.... [similar indications in Cen A, cf. EHT observations in Janssen+ 202I]

Fermi-type Particle Acceleration

Kinematic effect resulting from scattering off magnetic inhomogeneities E. Fermi, Phys. Rev. 75, 578 [1949]
_Ingredients: in frame of scattering centre

- momentum magnitude conserved
- particle direction randomised

_Characteristic energy change per scattering:

$$
\Delta \epsilon=\epsilon_{2}-\epsilon_{1}=2 \Gamma_{s}^{2}\left(\epsilon_{1} u_{s}^{2} / c^{2}-\overrightarrow{p_{1}} \cdot \overrightarrow{u_{s}}\right) \quad p_{1} \simeq \epsilon_{1} / c
$$

\Rightarrow energy gain for head-on ($\overrightarrow{\mathrm{p}}_{\mathrm{I}} \cdot \overrightarrow{\mathrm{u}}_{\mathrm{s}}<0$), loss for following collision $\left(\overrightarrow{\mathrm{p}}_{\mathrm{I}} \cdot \overrightarrow{\mathrm{u}}_{\mathrm{s}}>0\right)$

- I. stochastic: average energy gain $\underline{2 n d}$ order: $\quad<\Delta \epsilon\rangle \propto \Gamma_{s}^{2}\left(u_{s} / c\right)^{2} \epsilon_{1}$

Non-Gradual Shear Particle Acceleration

- II. Non-gradual shear flow

- like 2nd Fermi, stochastic process with average gain per cycle (crossing and recrossing):

$$
<\Delta \epsilon>\sim \Gamma_{\Delta}^{2} \beta_{\Delta}^{2} \epsilon
$$

with relative velocity $\beta_{\Delta}=\left(u_{1}-u_{2}\right) /\left[\left(1-u_{1} u_{2} / c^{2}\right) c\right]$
 provided particle mean free path $\lambda>\Delta r$

Non-Gradual Shear Particle Acceleration

- II. Non-gradual shear flow

- like 2nd Fermi, stochastic process with average gain per cycle (crossing and recrossing):

$$
<\Delta \epsilon>\sim \Gamma_{\Delta}^{2} \beta_{\Delta}^{2} \epsilon
$$

with relative velocity $\beta_{\Delta}=\left(u_{1}-u_{2}\right) /\left[\left(1-u_{1} u_{2} / c^{2}\right) c\right]$

provided particle mean free path $\lambda>\Delta r$

- characteristic acceleration timescale:

$$
t_{\mathrm{acc}} \simeq \frac{\epsilon}{(d \epsilon / d t)} \simeq \frac{\epsilon}{\langle\Delta \epsilon\rangle} t_{c} \propto \lambda
$$

with cycle time t_{c}

Stochastic Shear Particle Acceleration (basic idea) I

III. Gradual shear flow with frozen-in scattering centres:
non-relativistic $\vec{u}=u_{z}(x) \vec{e}_{z}$

- like 2nd Fermi, stochastic process with average gain:

$$
<\Delta \epsilon>\propto\left(\frac{u}{c}\right)^{2} \epsilon=\frac{1}{c^{2}}\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \lambda^{2} \epsilon
$$

using characteristic effective velocity:

$$
u=\left(\frac{\partial u_{z}}{\partial x}\right) \lambda \quad, \text { where } \lambda=c \tau \quad \text { particle mean free path }
$$

Berezhko \& Krymsky I98I; Berezhko I982; Earl+ I988; Webb I989; Jokipii \& Morfill I990; Webb+ I994; FR \& Duffy 2004, 2006, 2016; Liu, FR \& Aharonian 2017; Webb+ 2018, 2019; Lemoine 2019; FR \& Duffy 2019, 2021....

Stochastic Shear Particle Acceleration (basic idea) I

III. Gradual shear flow with frozen-in scattering centres:
non-relativistic $\vec{u}=u_{z}(x) \vec{e}_{z}$

- like 2nd Fermi, stochastic process with average gain:

$$
<\Delta \epsilon>\propto\left(\frac{u}{c}\right)^{2} \epsilon=\frac{1}{c^{2}}\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \lambda^{2} \epsilon
$$

using characteristic effective velocity:

$$
u=\left(\frac{\partial u_{z}}{\partial x}\right) \lambda, \text { where } \lambda=c \tau \text { particle mean free path }
$$

- leads to:

$$
t_{a c c}=\frac{\epsilon}{(d \epsilon / d t)} \sim \frac{\epsilon}{\langle\Delta \epsilon\rangle} \times \frac{\lambda}{c} \propto \frac{1}{\lambda}
$$

\Rightarrow seeds from acceleration @ shock or stochastic...
\Rightarrow easier for protons... (Δ UHECR)

Berezhko \& Krymsky I98I; Berezhko I982; Earl+ I988; Webb 1989; Jokipii \& Morfill I990; Webb+ I994; FR \& Duffy 2004, 2006, 2016; Liu, FR \& Aharonian 2017; Webb+ 2018, 2019; Lemoine 2019; FR \& Duffy 2019, 2021....

Stochastic Shear Particle Acceleration (basic idea) II

Calculate Fokker Planck coefficients for particle travelling across shear $\mathbf{u}_{z}(x)$ with $\mathbf{p}_{2}=\mathbf{p}_{1}+\mathrm{m} \delta \mathbf{u}$ where $\delta \mathrm{u}=\left(\mathrm{du}_{\mathrm{z}} / \mathrm{dx}\right) \delta \mathrm{x}$ and $\delta \mathrm{x}=\mathrm{v}_{\mathrm{x}} \tau, \quad \tau=\lambda / c$

$$
\Delta p:=p_{2}-p_{1} \Rightarrow\left\{\begin{aligned}
\left\langle\frac{\Delta p}{\Delta t}\right\rangle & \propto p\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \tau \\
\left\langle\frac{(\Delta p)^{2}}{\Delta t}\right\rangle & \propto p^{2}\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \tau
\end{aligned}\right.
$$

\Rightarrow detailed balance satisfied [scattering being reversible $P(p,-\Delta p)=P(p-\Delta p, \Delta p)]$

Stochastic Shear Particle Acceleration (basic idea) II

Calculate Fokker Planck coefficients for particle travelling across shear $\mathbf{u}_{z}(x)$ with

$$
\begin{aligned}
& \mathbf{p}_{2}=\mathbf{p}_{1}+\mathrm{m} \delta \mathbf{u} \text { where } \delta u=\left(d u_{z} / d x\right) \delta x \text { and } \delta x=v_{x} \tau, \quad \tau=\lambda / c \\
& \Delta p:=p_{2}-p_{1} \Rightarrow\left\{\begin{aligned}
\left\langle\frac{\Delta p}{\Delta t}\right\rangle & \propto p\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \tau \\
\left\langle\frac{(\Delta p)^{2}}{\Delta t}\right\rangle & \propto p^{2}\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \tau
\end{aligned}\right.
\end{aligned}
$$

\Rightarrow detailed balance satisfied [scattering being reversible $P(p,-\Delta p)=P(p-\Delta p, \Delta p)]$
Fokker Planck eq. reduces to momentum diffusion equation:

$$
\begin{gathered}
\left.\frac{\partial f}{\partial t}=\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} D \frac{\partial f}{\partial p}\right) \right\rvert\, \\
D=\frac{1}{15}\left(\frac{\partial u_{z}}{\partial x}\right)^{2} p^{2} \tau \propto p^{2+\alpha} \text { for } \tau:=\tau_{0} p^{\alpha}
\end{gathered}
$$

(cf. Jokipii \& Morfill I990; FR \& Duffy 2006)

Relativistic Particle Transport Equation (PTE) - mixed frame - for isotopic distribution function $f_{0}\left(x^{\alpha}, \mathrm{p}\right)$, with $\mathrm{x}^{\alpha}=(\mathrm{ct}, \mathrm{x}, \mathrm{y}, \mathrm{z}$,$) and metric tensor \mathrm{g}_{\alpha \beta}$
(fluid four velocity u^{α} and fluid four acceleration $\mathrm{u}_{\alpha}=u^{\beta} u_{\alpha ; \beta}$)

$$
\begin{aligned}
& \nabla_{\alpha}\left[c u^{\alpha} f_{0}-\kappa\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)\left(\frac{\partial f_{0}}{\partial x^{\beta}}-\dot{u}_{\beta} \frac{\left(p^{0}\right)^{2}}{p} \frac{\partial f_{0}}{\partial p}\right)\right] \\
& \quad+\frac{1}{p^{2}} \frac{\partial}{\partial p}\left[-\frac{p^{3}}{3} c u_{; \beta}^{\beta} f_{0}+p^{3}\left(\frac{p^{0}}{p}\right)^{2}\right. \\
& \left.\quad \times \kappa \dot{u}^{\beta}\left(\frac{\partial f_{0}}{\partial x^{\beta}}-\dot{u}_{\beta} \frac{\left(p^{0}\right)^{2}}{p} \frac{\partial f_{0}}{\partial p}\right)-\Gamma \tau p^{4} \frac{\partial f_{0}}{\partial p}\right]=Q
\end{aligned}
$$

(Webb 1989; cf. also FR \& Mannheim 2002; Webb+ 20I8)

Relativistic Particle Transport Equation (PTE) - mixed frame - for isotopic distribution function $f_{0}\left(x^{\alpha}, p\right)$, with $x^{\alpha}=(c t, x, y, z$,$) and metric tensor g_{\alpha \beta}$ (fluid four velocity u^{α} and fluid four acceleration $\dot{\alpha}_{\alpha}=u^{\beta} u_{\alpha ; \beta}$)

$$
\begin{aligned}
& \nabla_{\alpha}\left[c u^{\alpha} f_{0}-\kappa\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)\left(\frac{\partial f_{0}}{\partial x^{\beta}}-\frac{\left(p^{0}\right)^{2} \partial f}{p}\right)\right] \\
& +\frac{1}{p^{2}} \frac{\partial}{\partial p}\left[\frac{p^{3}}{3} \frac{t^{3} f_{0}}{p^{3}\left(p^{0}\right)^{2}} \frac{p}{}\right.
\end{aligned}
$$

(Webb I989; cf. also FR \& Mannheim 2002; Webb+ 20I8)

Note: for steady shear flow profile $\vec{u}=u(r) \overrightarrow{e_{z}}$, fluid four acceleration $\dot{u}_{\beta}=0$ and divergence $\nabla_{\beta} u^{\beta}=0$

shear term

Γ relativistic shear coefficient

\mathbb{C} galaxies

Review

An Introduction to Particle Acceleration in Shearing Flows

Frank M. Rieger ${ }^{1,2(1)}$
1 ZAH, Institut für Theoretische Astrophysik, Heidelberg University, Philosophenweg 12, 69120 Heidelberg, Germany; f.rieger@uni-heidelberg.de or frank.rieger@mpi-hd.mpg.de
2 Max-Planck-Institut für Kernphysik, P.O. Box 103980, 69029 Heidelberg, Germany

Received: 15 August 2019; Accepted: 6 September 2019; Published: 10 September 2019

Abstract: Shear flows are ubiquitously present in space and astrophysical plasmas. This paper highlights the central idea of the non-thermal acceleration of charged particles in shearing flows and reviews some of the recent developments. Topics include the acceleration of charged particles by microscopic instabilities in collisionless relativistic shear flows, Fermi-type particle acceleration in macroscopic, gradual and non-gradual shear flows, as well as shear particle acceleration by large-scale velocity turbulence. When put in the context of jetted astrophysical sources such as Active Galactic Nuclei, the results illustrate a variety of means beyond conventional diffusive shock acceleration by which power-law like particle distributions might be generated. This suggests that relativistic shear flows can account for efficient in-situ acceleration of energetic electrons and be of relevance for the production of extreme cosmic rays.

Keywords: shearing flows; relativistic outflows; AGN jets; particle transport; acceleration

1. Introduction

Shear flows are naturally expected in a variety of astrophysical environments. Prominent examples include the rotating accretion flows around compact objects and the relativistic outflows (jets) in gamma-ray bursts (GRBs) or Active Galactic Nuclei (AGN) [1]. On conceptual grounds the jets in AGN are expected to exhibit some internal velocity stratification from the very beginning, with a black hole ergo-spheric driven, highly relativistic (electron-positron) flow surrounded by a slower

Kinetic/PIC:

Alves, Grismayer+, Liang+, Sironi+... turbulence:
Bykov \& Toptygin, Ohira...

On electron shear acceleration in Iarge-scale jets

Simplified leaky-box model for shear acceleration

$$
\frac{\partial f}{\partial t}=\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} D_{p} \frac{\partial f}{\partial p}\right)-\frac{f}{\tau_{\mathrm{esc}}}
$$

(FR \& Duffy 2019)

Momentum-diffusion: $\quad D_{p}=\Gamma p^{2} \tau_{s} \propto p^{2+\alpha}$ mean free path: $\lambda=c \tau_{s} \propto p^{\alpha}$
[$\alpha=1 / 3$ for Kolmogorov]
Escape time:

$$
\tau_{\mathrm{esc}}(p) \simeq \frac{(\Delta r)^{2}}{2 \kappa(p)} \propto p^{-\alpha}
$$

$$
\Gamma=\left(c^{2} / 15\right) \gamma_{b}(r)^{4}(d \beta / d r)^{2}
$$

Power-law solution:

$$
f(p)=f_{0} p^{-s}
$$

- PL index s sensitive to maximum flow speed
- only for relativistic flow speeds is classical index $s=3+\alpha$ obtained.
$\left[n(p) \propto p^{2} f \propto p^{-(1+\alpha)}\right]$

Radiative-loss-limited electron acceleration in mildly relativistic flows

Ansatz: Fokker-Planck equation for $\mathrm{f}(\mathrm{t}, \mathrm{p})$ incorporating acceleration by stochastic and shear, and losses due to synchrotron and escape for cylindrical jet.

Parameters I: $B=3 \mu G, v_{j, \max } \sim 0.4 c, r_{j} \sim 30 \mathrm{pc}, \beta_{\mathrm{A}} \sim 0.007, \Delta r \sim r_{j} / 10$,
mean free path $\lambda=\xi^{-1} r_{L}\left(r_{L} / \Lambda_{\max }\right)^{1-q} \propto \gamma^{2-q, q=5 / 3}$ (Kolmogorov), $\xi=0.1$

Radiative-loss-limited electron acceleration in mildly relativistic flows

(Liu, FR \& Aharonian 20I7)

Ansatz: Fokker-Planck equation for $\mathrm{f}(\mathrm{t}, \mathrm{p})$ incorporating acceleration by stochastic and shear, and losses due to synchrotron and escape for cylindrical jet.

- from 2nd Fermi to shear...
- electron acceleration beyond $\gamma \sim 10^{8}$ possible
- formation of multi-component particle distribution
- incorporation of escape softens the spectrum

Parameters I: $B=3 \mu G, v_{j, \text { max }} \sim 0.4 c, r_{j} \sim 30 \mathrm{pc}, \beta_{A} \sim 0.007, \Delta r \sim r_{j} / l 0$, mean free path $\lambda=\xi^{-1} r L\left(r / \Lambda_{\text {max }}\right)^{1-q} \propto \gamma^{2-q}, q=5 / 3$ (Kolmogorov), $\xi=0.1$
(cf .also FR \& Duffy 2019, 2022; Tavecchio 202I)

Radiative-loss-limited electron acceleration in mildly relativistic flows

(Liu, FR \& Aharonian 20I7)

(Wang, Reville, Liu, FR \& Aharonian 202I)

Ansatz: Fokker-Planck equation for $\mathrm{f}(\mathrm{t}, \mathrm{p})$ incorporating acceleration by stochastic and shear, and losses due to synchrotron and escape for cylindrical jet.

- from 2nd Fermi to shear...
- electron acceleration beyond $\gamma \sim 10^{8}$ possible
- formation of multi-component particle distribution
- incorporation of escape softens the spectrum
caveat: simplification of spatial transport; in general, high jet speeds needed.
(cf .also FR \& Duffy 2019, 2022; Tavecchio 202I)

Exemplary application I

On continuous shear acceleration in the kpc-scale jet of Cen A

Centaurus A

(Wang, Reville, Liu, FR \& Aharonian 202I)
estimated (kinetic) jet power $L_{j} \sim 4 \times 10^{42} \mathrm{erg} / \mathrm{s}$

- SED reproduction with shearrelated broken power-law \& shock-accelerated seeds
- Kolmogorov turbulence description $\lambda \propto \gamma^{1 / 3}$
- quasi-linear velocity shear
- parameters: $\Delta r=100 \mathrm{pc}$, $B=17 \mu G, \beta_{0}=0.67$
- electron acceleration up to $\gamma_{e} \approx 10^{8}$
- UHE proton acceleration to $>10^{18} \mathrm{eV}$

Exemplary application II

- SED reproduction with shear-related 2nd SED component
- Kolmogorov turbulence description $\lambda \propto \gamma^{1 / 3}$, electrons reaching $\gamma_{e} \sim 3 \times 10^{8}$
- inferred parameters: $\mathrm{B} \sim\left(\mathrm{a}\right.$ few - I 0) $\mu \mathrm{G}, \beta_{0} \sim(0.79-0.88)$
- parameters consistent with large-scale jets being mildly relativistic $\Gamma_{\mathrm{j}} \lesssim 3$

(He...+ FR 2023)

Developments I

Characterising velocity shears in large-scale jets (Wang, Reville, Mizuno, FR \& Aharonian 2023)

- employ 3D relativistic MHD jet simulations (PLUTO) for vilc $\varepsilon[0.6,0.99]$
- study KHI sheath formation for kinetically dominated jets ($\sigma<0.2$) in stationary cocoon
- explore shear flow profile \& turbulence spectrum for particle acceleration...
- typically $W_{\text {sh }} / R_{j} \sim 0.2-0.5$ (transition stage) and $\sim 0.5-0.8$ (deep saturation)...
- Kolmogorov-type (q ~ 5/3) turbulence spectra...

V9B-3

Developments I

Characterising velocity shears in large-scale jets (Wang, Reville, Mizuno, FR \& Aharonian 2023)

- employ 3D relativistic MHD jet simulations (PLUTO) for vilc $\varepsilon[0.6,0.99]$
- study KHI sheath formation for kinetically dominated jets ($\sigma<0.2$) in stationary cocoon
- explore shear flow profile \& turbulence spectrum for particle acceleration...
- typically $W_{\text {sh }} / R_{j} \sim 0.2-0.5$ (transition stage) and $\sim 0.5-0.8$ (deep saturation)...
- Kolmogorov-type (q~5/3) turbulence spectra...

jet structure and KHI evolution

(azimuthally) averaged flow velocity profiles

Developments II

On continuous electron acceleration in large-scale AGN jets (FR \& Duffy 2022)

Solve full PTE for cylindrical shear flow
without radiative losses

- at ultra-relativistic flow speeds, universal PL index recovered:

$$
f \propto p^{-s} \text { with } s \rightarrow(3+\alpha)
$$

- at mildly relativistic flow speeds, PL index gets softer \& becomes sensitive to flow profile
- Ist-order FP-type approximation possible...

Developments II

On continuous electron acceleration in large-scale AGN jets (FR \& Duffy 2022)

Solve full PTE for cylindrical shear flow
without radiative losses

- at ultra-relativistic flow speeds, universal PL index recovered:
$f \propto p^{-s}$ with $s \rightarrow(3+\alpha)$
- at mildly relativistic flow speeds, PL index gets softer \& becomes sensitive to flow profile
- Ist-order FP-type approximation possible...
allows to constrain flow profile through observed PL index....

On UHECR acceleration in shearing large-scale AGN jets

On gradual shear in mildly relativistic, large-scale AGN jets

(FR \& Duffy 2019)

Figure 2. Allowed parameter range (shaded) for shear acceleration of CR protons to energies $E_{p}^{\prime}=10^{18} \mathrm{eV}$ for a particle mean free path $\lambda^{\prime} \propto p^{\prime \alpha}$ with $\alpha=1 / 3$ (corresponding to Kolmogorov type turbulence $q=5 / 3$). A flow Lorentz factor $\gamma_{b}\left(r_{0}\right)=3$ has been assumed.

Potential for UHECR acceleration:

need jet widths such as to
(I) laterally confine particles,
(2) beat synchrotron losses,
(3) operate within system lifetime

- expect KHI-shaped shear width $\Delta r>0.1 r_{j}$ (FR \& Duffy 202I)
- for protons $\sim 10^{18} \mathrm{eV}$ achievable in jets with relatively plausible parameters (i.e., lengths

$$
10 \mathrm{kpc}-\mathrm{I} \mathrm{Mpc}, \mathrm{~B} \sim[\mathrm{I}-\mathrm{I} 00] \mu \mathrm{G})
$$

- escaping CRs may approach $N(E) \propto E^{-1}$

$$
\left(\mathrm{t}_{\text {acc,shear }} \propto \gamma^{q-2}\right)
$$

On gradual shear in mildly relativistic, large-scale AGN jets

(FR \& Duffy 2019)

Figure 2. Allowed parameter range (shaded) for shear acceleration of CR protons to energies $E_{p}^{\prime}=10^{18} \mathrm{eV}$ for a particle mean free path $\lambda^{\prime} \propto p^{\prime \alpha}$ with $\alpha=1 / 3$ (corresponding to Kolmogorov type turbulence $q=5 / 3$). A flow Lorentz factor $\gamma_{b}\left(r_{0}\right)=3$ has been assumed.

$$
\left(t_{\text {acc,shear }} \propto \gamma^{q-2}\right)
$$

Potential for UHECR acceleration:

need jet widths such as to
(I) laterally confine particles,
(2) beat synchrotron losses,
(3) operate within system lifetime

- expect KHI-shaped shear width $\Delta r>0.1 r_{j}$ (FR \& Duffy 202I)
- for protons $\sim 10^{18} \mathrm{eV}$ achievable in jets with relatively plausible parameters (i.e., lengths

$$
10 \mathrm{kpc}-\mathrm{I} \mathrm{Mpc}, \mathrm{~B} \sim[1-100] \mu \mathrm{G})
$$

- escaping CRs may approach $N(E) \propto E^{-1}$
- proton acceleration to $\sim 10^{20} \mathrm{eV}$ in mildly relativistic jets appears quite restricted (cf. also Liu+ 2017; Wang+202I; Webb+ 20I8, 2019)

On gradual shear in mildly relativistic, large-scale AGN jets

(FR \& Duffy 2019)

Figure 2. Allowed parameter range (shaded) for shear acceleration of CR protons to energies $E_{p}^{\prime}=10^{18} \mathrm{eV}$ for a particle mean free path $\lambda^{\prime} \propto p^{\prime \alpha}$ with $\alpha=1 / 3$ (corresponding to Kolmogorov type turbulence $q=5 / 3$). A flow Lorentz factor $\gamma_{b}\left(r_{0}\right)=3$ has been assumed.

$$
\left(\mathrm{t}_{\text {acc,shear }} \propto \gamma^{q-2}\right)
$$

caveat:

simplification of spatial transport

Potential for UHECR acceleration:

need jet widths such as to
(I) laterally confine particles,
(2) beat synchrotron losses,
(3) operate within system lifetime

- expect KHI-shaped shear width $\Delta r>0.1 r_{j}$ (FR \& Duffy 202I)
- for protons $\sim 10^{18} \mathrm{eV}$ achievable in jets with relatively plausible parameters (i.e., lengths

$$
10 \mathrm{kpc}-\mathrm{I} \mathrm{Mpc}, \mathrm{~B} \sim[1-100] \mu \mathrm{G})
$$

- escaping CRs may approach $N(E) \propto E^{-1}$
- proton acceleration to $\sim 10^{20} \mathrm{eV}$ in mildly relativistic jets appears quite restricted (cf. also Liu+ 2017; Wang+202I; Webb+ 2018, 2019)

Review
 Active Galactic Nuclei as Potential Sources of Ultra-High Energy Cosmic Rays

Frank M. Rieger ${ }^{1,2(0)}$

1 Institute for Theoretical Physics (ITP), Heidelberg University, Philosophenweg 12, 69120 Heidelberg, Germany; f.rieger@uni-heidelberg.de
2 Max-Planck-Institut für Kernphysik (MPIK), P.O. Box 103980, 69029 Heidelberg, Germany

Abstract

Active Galactic Nuclei (AGNs) and their relativistic jets belong to the most promising class of ultra-high-energy cosmic ray (UHECR) accelerators. This compact review summarises basic experimental findings by recent instruments, and discusses possible interpretations and astrophysical constraints on source energetics. Particular attention is given to potential sites and mechanisms of UHECR acceleration in AGNs, including gap-type particle acceleration close to the black hole, as well as first-order Fermi acceleration at trans-relativistic shocks and stochastic shear particle acceleration in large-scale jets. It is argued that the last two represent the most promising mechanisms given our current understanding, and that nearby FR I type radio galaxies provide a suitable environment for UHECR acceleration.

Keywords: ultra high energy cosmic rays; particle acceleration; radio Galaxies; relativistic jets

1. Introduction

The energy spectrum of cosmic rays runs over more than ten orders of magnitudes, from GeV energies to $\sim 10^{20} \mathrm{eV}$. While supernova remnants are believed to be the most probable sources of cosmic rays at lower energies (i.e., up to the 'knee' at $\sim 3 \times 10^{15} \mathrm{eV}$) $[1,2]$, the origin of ultra-high-energy cosmic rays (UHECRs, $E \geq 10^{18} \mathrm{eV}=1 \mathrm{EeV}$) is much less understood. While thought to be of extragalactic origin [3], the real astrophysical sources
non-gradual:
Ostrowski+, Kimura+. .
Espresso type:
Mbarek \& Caprioli...

see also talk by H. Kang

Summary

Particle Acceleration in Astrophysical Shear Flows:

- needs relativistic flow speeds to be efficient (hard spectra)
- depends on seed injection for electrons (\nearrow e.g., shocks)
- represent a 'natural' mechanism in AGN jets
- origin of ultra-relativistic electrons \& extended emission
- multiple power-law formation possible...
- spectral shape (PL index) indicative of flow profile...
- large-scale AGN jets as possible UHE accelerators....

Summary

Particle Acceleration in Astrophysical Shear Flows:

- needs relativistic flow speeds to be efficient (hard spectra)
- depends on seed injection for electrons (\nearrow e.g., shocks)
- represent a 'natural' mechanism in AGN jets
- origin of ultra-relativistic electrons \& extended emission - multiple power-law formation possible...
- spectral shape (PL index) indicative of flow profile...
- large-scale AGN jets as possible UHE accelerators....

Thank you ! \& Questions ?

Summary

Particle Acceleration in Astrophysical Shear Flows:

- needs relativistic flow speeds to be efficient (hard spectra)
- depends on seed injection for electrons (\nearrow e.g., shocks)
- represent a 'natural' mechanism in AGN jets
- origin of ultra-relativistic electrons \& extended emission
- multiple power-law formation possible...
- spectral shape (PL index) indicative of flow profile...
- large-scale AGN jets as possible UHE accelerators....

Thank you ! \& Questions ?

MIAPbP Workshop Sept. 2024

MIAPHP

HIGH-ENERGY PLASMA PHENOMENA IN ASTROPHYSICS

9-20 September 2024
 Elena Amato, Andrei M. Beloborodov, Frank Jenko, Anatoly Spitkovsky

HIGH-ENERGY PLASMA PHENOMENA IN ASTROPHYSICS
(i) Overview
-. Participants

锶 ScheduleRoom reservation

In recent years, spurred in large part by the development of first-principles numerical simulations, the plasma astrophysics community has made important strides in understanding the plasma processes relevant for astrophysical systems. The next step, which will be a key topic of the MIAPbP program, is to connect the rich plasma behavior to observed radiative phenomena. These phenomena include old puzzles, e.g. hard X-ray emission from accreting black holes, gamma-ray flares from blazars, cosmic ray acceleration, giant magnetar flares and GRBs. Plasma physics is also key to solving new puzzles such as the cosmological FRBs and gamma-rays from neutron star mergers. The role of plasma instabilities is especially prominent in transient phenomena and strong connections are emerging between plasma physics and time-domain astronomy, a quickly developing observational field. Plasma physics also plays an increasing role in multi-messenger astronomy where main targets are energetic compact objects capable of producing neutrinos, gravitational waves, and nonthermal radiation.

The current efforts to understand plasma behavior lay the foundations for the future of high-energy astrophysics. Within a two-week MIAPbP program, we want to facilitate progress in this direction by bringing together both senior researchers as well as early-career scientists.

Registration open

(Deadline 22 December 2023)

[^0]: Parameters: ECBPL: $\boldsymbol{\alpha}_{1}=2.30, \boldsymbol{\alpha}_{2}=3.85, \gamma_{\mathrm{b}}=1.4 \times 10^{6}, \gamma_{\mathrm{c}}=10^{8}, \mathrm{~B}=23 \mu \mathrm{G}, \mathrm{W}_{\text {tot }}=4 \times 10^{53} \mathrm{erg}$

