• Astrophysical Motivation & Exemplary Context
 ‣ Extended high-energy emission in large-scale AGN jets
 ‣ Ubiquity of shearing flows

• Shear Particle Acceleration
 ‣ Focus on stochastic Fermi-type acceleration (basic idea)
 ‣ Particle transport, acceleration and power-law formation
 ‣ Modelling electron shear acceleration in large-scale jets
 ‣ On UHECR acceleration in shearing AGN flows
 ‣ Summary
Example: High-Energy Emission from large-scale jets

- extended X-ray electron synchrotron emission
- needs electron Lorentz factors $\gamma_e \sim 10^8$
- short cooling timescale $t_{\text{cool}} \propto 1/\gamma_e$; cooling length $c t_{\text{cool}} \ll \text{kpc}$
- distributed acceleration mechanism required (Sun, Yang, FR, Liu & Aharonian 2018 for M87)

$\nu \propto \gamma^2 B$

M87

Radio (VLA)

Optical (HST)

X-ray (Chandra)

$1 \text{arcsec} \sim 0.1 \text{kpc (0.081 kpc)}$

Relativistic particles throughout whole jet

Marshall+ 2002

SED can be fitted by broken power-law

$(B = 3x10^{-4} \text{ G, } \gamma_0 \sim 10^6, \gamma_{\text{max}} \sim 10^8, P_{\text{jet}} \sim 10^{43} \text{ erg/s, } \Delta \alpha \sim 2)$
VHE emission along the kpc-jet of Cen A

- Inverse Compton up-scattering of dust by ultra-relativistic electrons with $\gamma_e = 10^8$
- verifies X-ray synchrotron interpretation
- continuous re-acceleration required to avoid rapid cooling
VHE emission along the kpc-jet of Cen A

- Inverse Compton up-scattering of dust by ultra-relativistic electrons with $\gamma_e = 10^8$
- verifies X-ray synchrotron interpretation
- continuous re-acceleration required to avoid rapid cooling

(H.E.S.S. Collab. 2020, Nature)
How to accelerate electrons to $\gamma_e \sim 10^8$ and keep them energized?

“one-shot”
- Vacuum gap
- Reconnection

“Fermi-type” (repeated)
- Shock
- Stochastic
- Shear

A possible scenario...

BH magnetosphere
- Charge density?
- Topology?
- Transparency?

Inner jet
- Limited in size?
- Luminosity output?
- Spectral shape?

Jet, hot spots
- Efficiency (Γ_s, σ)?
- Localized?

Jet, lobes
- Efficiency?
- Spectral shape?

Jet
- Efficiency?
- Energetic seeds?
What are shearing flows?

- Uniform flow u_0
- Gradual shear
 - $u_z(x)$
- Non-gradual / velocity jump

References:
- Berezhko & Krymsky; Earl, Jokipii & Morfill; Webb+; FR & Duffy…
- Jokipii & Morfill; Ostrowski; Kimura+…
Jet origin: BH-driven (BZ) jet & disk-driven (BP) outflow… (e.g., Mizuno 2022)

Jet propagation: instabilities, mixing, layer formation… (e.g., Perucho 2019)

Jet observations: limb-brightening & polarisation signatures… (e.g., Kim+ 2018)

- **M87**: significant structural patterns on sub-pc scales
 \[\text{presence of both slow (~0.5c) and fast (~0.92c) components} \ldots\]
 [similar indications in Cen A, cf. EHT observations in Janssen+ 2021]
Fermi-type Particle Acceleration

Kinematic effect resulting from scattering off magnetic inhomogeneities

E. Fermi, Phys. Rev. 75, 578 [1949]

Ingredients: in frame of scattering centre

- momentum magnitude conserved
- particle direction randomised

Characteristic energy change per scattering:

\[
\Delta \epsilon = \epsilon_2 - \epsilon_1 = 2 \Gamma_s^2 \left(\epsilon_1 u_s^2 / c^2 - \vec{p}_1 \cdot \vec{u}_s \right)
\]

\[p_1 \simeq \epsilon_1 / c\]

- energy gain for _head-on_ \((\vec{p}_1 \cdot \vec{u}_s < 0)\), loss for _following collision_ \((\vec{p}_1 \cdot \vec{u}_s > 0)\)

- _I. stochastic:_ average energy gain _2nd order:_

\[< \Delta \epsilon > \propto \Gamma_s^2 (u_s / c)^2 \epsilon_1\]
II. **Non-gradual shear flow**

- like 2nd Fermi, stochastic process with average gain per cycle (crossing and recrossing):

 \[
 \langle \Delta \epsilon \rangle \sim \Gamma^2 \Delta \beta^2 \Delta \epsilon
 \]

 with relative velocity

 \[
 \beta_\Delta = \frac{u_1 - u_2}{\left(1 - u_1 u_2/c^2\right)c}
 \]

 provided particle mean free path \(\lambda > \Delta r \)

II. Non-gradual shear flow

- like 2nd Fermi, stochastic process with average gain per cycle (crossing and recrossing):
 \[\langle \Delta \epsilon \rangle \sim \Gamma^2 \beta^2 \Delta \epsilon \]

- provided particle mean free path \(\lambda > \Delta r \)

- characteristic acceleration timescale:
 \[t_{\text{acc}} \sim \frac{\epsilon}{(d\epsilon/dt)} \sim \frac{\epsilon}{\langle \Delta \epsilon \rangle} t_c \propto \lambda \]

with cycle time \(t_c \)

III. **Gradual shear flow** with frozen-in scattering centres:

- like 2nd Fermi, stochastic process with average gain:

\[
< \Delta \epsilon > \propto \left(\frac{u}{c} \right)^2 \epsilon = \frac{1}{c^2} \left(\frac{\partial u_z}{\partial x} \right)^2 \lambda^2 \epsilon
\]

using *characteristic effective velocity*:

\[
u = \left(\frac{\partial u_z}{\partial x} \right) \lambda, \text{ where } \lambda = c \tau \text{ particle mean free path}
\]
Stochastic Shear Particle Acceleration (basic idea) I

III. **Gradual shear flow** with frozen-in scattering centres:

- like 2nd Fermi, stochastic process with average gain:
 \[
 < \Delta \epsilon > \propto \left(\frac{u}{c} \right)^2 \epsilon = \frac{1}{c^2} \left(\frac{\partial u_z}{\partial x} \right)^2 \lambda^2 \epsilon
 \]

 using **characteristic effective velocity**:
 \[
 u = \left(\frac{\partial u_z}{\partial x} \right) \lambda
 \]
 where \(\lambda = c \tau \) particle mean free path

- leads to:
 \[
 t_{acc} = \frac{\epsilon}{(d\epsilon/dt)} \sim \frac{\epsilon}{< \Delta \epsilon >} \times \frac{\lambda}{c} \propto \frac{1}{\lambda}
 \]

 ⇒ **seeds** from acceleration @ shock or stochastic…
 ⇒ easier for protons…(⇒ UHECR)

Calculate Fokker Planck coefficients for particle travelling across shear $u_z(x)$ with

$$p_2 = p_1 + m \delta u$$

where $\delta u = (du_z/dx) \delta x$ and $\delta x = v_x \tau$, $\tau = \lambda/c$

$$\Delta p := p_2 - p_1 \Rightarrow \left\{ \begin{array}{l}
\left\langle \frac{\Delta p}{\Delta t} \right\rangle \propto p \left(\frac{\partial u_z}{\partial x} \right)^2 \tau \\
\left\langle \frac{(\Delta p)^2}{\Delta t} \right\rangle \propto p^2 \left(\frac{\partial u_z}{\partial x} \right)^2 \tau
\end{array} \right.$$

\Rightarrow detailed balance satisfied [scattering being reversible $P(p, -\Delta p) = P(p-\Delta p, \Delta p)$]

Calculate Fokker Planck coefficients for particle travelling across shear \(u_z(x) \) with

\[
p_2 = p_1 + m \delta u \quad \text{where} \quad \delta u = \left(\frac{du_z}{dx} \right) \delta x \quad \text{and} \quad \delta x = v_x \tau, \quad \tau = \frac{\lambda}{c}
\]

\[
\Delta p := p_2 - p_1 = \left\{ \begin{align*}
\left\langle \frac{\Delta p}{\Delta t} \right\rangle &\propto p \left(\frac{\partial u_z}{\partial x} \right)^2 \tau \\
\left\langle \frac{(\Delta p)^2}{\Delta t} \right\rangle &\propto p^2 \left(\frac{\partial u_z}{\partial x} \right)^2 \tau
\end{align*} \right.
\]

\[\Rightarrow \text{detailed balance satisfied} \quad [\text{scattering being reversible} \ P(p, -\Delta p) = P(p-\Delta p, \Delta p)]\]

Fokker Planck eq. reduces to momentum diffusion equation:

\[
\frac{\partial f}{\partial t} = \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D \frac{\partial f}{\partial p} \right)
\]

\[
D = \frac{1}{15} \left(\frac{\partial u_z}{\partial x} \right)^2 p^2 \tau \propto p^{2+\alpha} \quad \text{for} \quad \tau := \tau_0 p^\alpha
\]

Relativistic Particle Transport Equation (PTE) - mixed frame - for isotopic distribution function $f_0(x^\alpha,p)$, with $x^\alpha = (ct,x,y,z)$ and metric tensor $g_{\alpha\beta}$ (fluid four velocity u^α and fluid four acceleration $\ddot{u}_\alpha = u^\beta u_{\alpha;\beta}$)

\[
\nabla_\alpha \left[c u^\alpha f_0 - \kappa (g^{\alpha\beta} + u^\alpha u^\beta) \left(\frac{\partial f_0}{\partial x^\beta} - \dot{u}_\beta \frac{(p^0)^2}{p} \frac{\partial f_0}{\partial p} \right) \right] \\
+ \frac{1}{p^2} \frac{\partial}{\partial p} \left[-\frac{p^3}{3} c u^\beta_{\;\beta} f_0 + p^3 \left(\frac{p^0}{p} \right)^2 \right] \\
\times \kappa \dot{u}^\beta \left(\frac{\partial f_0}{\partial x^\beta} - \dot{u}_\beta \frac{(p^0)^2}{p} \frac{\partial f_0}{\partial p} \right) - \Gamma \tau p^4 \frac{\partial f_0}{\partial p} = Q.
\]

(Webb 1989; cf. also FR & Mannheim 2002; Webb+ 2018)
Relativistic Particle Transport Equation (PTE) - mixed frame - for isotopic distribution function $f_0(x^\alpha,p)$, with $x^\alpha = (ct,x,y,z,)$ and metric tensor $g_{\alpha\beta}$ (fluid four velocity u^α and fluid four acceleration $\dot{u}_\alpha = u^\beta u_{\alpha;\beta}$)

\[
\nabla_\alpha \left[c u^\alpha f_0 - \kappa (g^{\alpha\beta} + u^\alpha u^\beta) \left(\frac{\partial f_0}{\partial x^{\beta}} - \dot{u}_\beta \frac{(p^0)^2}{p} \frac{\partial f_0}{\partial p} \right) \right]
\]

\[
+ \frac{1}{p^2} \frac{\partial}{\partial p} \left[-\frac{p^3}{3} c u^{\beta}_{,\beta} f_0 + p^3 \left(\frac{p^0}{p} \right)^2 \right]
\]

\[
x \kappa \dot{u}^{\beta} \left(\frac{\partial f_0}{\partial x^{\beta}} - \dot{u}_\beta \frac{(p^0)^2}{p} \frac{\partial f_0}{\partial p} \right) - \Gamma \tau p^4 \frac{\partial f_0}{\partial p} \right] = Q.
\]

(Webb 1989; cf. also FR & Mannheim 2002; Webb+ 2018)

Note: for steady shear flow profile $\vec{u} = u(r)\hat{e}_z$, fluid four acceleration $\dot{u}_\beta = 0$ and divergence $\nabla_\beta u^\beta = 0$
An Introduction to Particle Acceleration in Shearing Flows

Frank M. Rieger

1. Introduction

Shear flows are naturally expected in a variety of astrophysical environments. Prominent examples include the rotating accretion flows around compact objects and the relativistic outflows (jets) in gamma-ray bursts (GRBs) or Active Galactic Nuclei (AGN) [1]. On conceptual grounds the jets in AGN are expected to exhibit some internal velocity stratification from the very beginning, with a black hole ergo-spheric driven, highly relativistic (electron-positron) flow surrounded by a slower moving (electron-proton dominated) wind from the inner parts of the disk (e.g., see Refs. [2,3] for...
On electron shear acceleration in large-scale jets
Simplified leaky-box model for shear acceleration

\(\frac{\partial f}{\partial t} = \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial f}{\partial p} \right) - \frac{f}{\tau_{\text{esc}}} \)

Momentum-diffusion:

\[D_p = \Gamma p^2 \tau_s \propto p^{2+\alpha}. \]

Escape time:

\[\tau_{\text{esc}}(p) \approx \frac{(\Delta r)^2}{2 \kappa(p)} \propto p^{-\alpha} \]

Power-law solution:

\[f(p) = f_0 p^{-s} \]

- PL index \(s \) sensitive to maximum flow speed
- only for relativistic flow speeds is classical index \(s = 3 + \alpha \) obtained.

\[n(p) \propto p^2 f \propto p^{-(1+\alpha)} \]

\(\lambda = c \tau_s \propto p^{\alpha} \)

\[\alpha = 1/3 \text{ for Kolmogorov} \]

\[\Gamma = \left(\frac{c^2}{15} \right) \gamma_b(r)^4 \frac{d\beta}{dr}^2 \]

(see also Webb+ 2018)
On continuous electron acceleration in large-scale AGN jets

Radiative-loss-limited electron acceleration in mildly relativistic flows

Ansatz: Fokker-Planck equation for $f(t,p)$ incorporating acceleration by stochastic and shear, and losses due to synchrotron and escape for cylindrical jet.

Parameters I: $B = 3\mu G$, $v_{j,\text{max}} \sim 0.4c$, $r_j \sim 30$ pc, $\beta_A \sim 0.007$, $\Delta r \sim r_j/10$, mean free path $\lambda = \xi^{-1} r_L (r_L/A_{\text{max}})^{1-q} \propto \gamma^{2-q}$, $q=5/3$ (Kolmogorov), $\xi = 0.1$.
On continuous electron acceleration in large-scale AGN jets

Radiative-loss-limited electron acceleration in mildly relativistic flows

Ansatz: Fokker-Planck equation for \(f(t,p) \) incorporating acceleration by stochastic and shear, and losses due to synchrotron and escape for cylindrical jet.

- from 2nd Fermi to shear…
- electron acceleration beyond \(\gamma \sim 10^8 \) possible
- formation of multi-component particle distribution
- incorporation of escape softens the spectrum

Parameters I: \(B = 3 \mu G, v_{i,\text{max}} \sim 0.4c, r_j \sim 30 \text{ pc}, \beta_A \sim 0.007, \Delta r \sim r_j/10, \) mean free path \(\lambda = \xi^{-1} r_L (r_L/L_{\text{max}})^{1-q} \sim \gamma^{2-q}, q=5/3 \) (Kolmogorov), \(\xi=0.1 \)

(Wang, Reville, Liu, FR & Aharonian 2021)

(Wang, Reville, Liu, FR & Aharonian 2021)

(cf. also FR & Duffy 2019, 2022; Tavecchio 2021)
On continuous electron acceleration in large-scale AGN jets

Radiative-loss-limited electron acceleration in mildly relativistic flows

Ansatz: Fokker-Planck equation for $f(t,p)$ incorporating acceleration by stochastic and shear, and losses due to synchrotron and escape for cylindrical jet.

- from 2nd Fermi to shear…
- electron acceleration beyond $\gamma \sim 10^8$ possible
- formation of multi-component particle distribution
- incorporation of escape softens the spectrum

caveat: simplification of spatial transport; in general, high jet speeds needed.

(Wang, Reville, Liu, FR & Aharonian 2021)
On continuous shear acceleration in the kpc-scale jet of Cen A

- SED reproduction with shear-related broken power-law & shock-accelerated seeds
- Kolmogorov turbulence description $\lambda \propto \gamma^{1/3}$
- quasi-linear velocity shear
- parameters: $\Delta r = 100$ pc, $B=17$ μG, $\beta_0=0.67$
- electron acceleration up to $\gamma_e \approx 10^8$
- UHE proton acceleration to $>10^{18}$ eV

(Wang, Reville, Liu, FR & Aharonian 2021)

Estimated (kinetic) jet power $L_j \sim 4 \times 10^{42}$ erg/s
Modelling the X-ray emission in the FR II galaxy 3C 273

- SED reproduction with shear-related 2nd SED component
- Kolmogorov turbulence description $\lambda \propto \gamma^{1/3}$, electrons reaching $\gamma_e \sim 3 \times 10^8$
- Inferred parameters: $B \sim (\text{a few} - 10) \mu G$, $\beta_0 \sim (0.79 - 0.88)$
- Parameters consistent with large-scale jets being mildly relativistic $\Gamma_j \lesssim 3$

 shear acceleration

(He…+ FR 2023)
Characterising velocity shears in large-scale jets (Wang, Reville, Mizuno, FR & Aharonian 2023)

- employ 3D relativistic MHD jet simulations (PLUTO) for $v_j/c \in [0.6, 0.99]$
- study KHI sheath formation for kinetically dominated jets ($\sigma < 0.2$) in stationary cocoon
- explore shear flow profile & turbulence spectrum for particle acceleration…
 - typically $W_{sh}/R_j \sim 0.2 - 0.5$ (transition stage) and $\sim 0.5 - 0.8$ (deep saturation)…
 - Kolmogorov-type ($q \sim 5/3$) turbulence spectra…
Characterising velocity shears in large-scale jets *(Wang, Reville, Mizuno, FR & Aharonian 2023)*

- employ 3D relativistic MHD jet simulations *(PLUTO)* for $v_j/c \in [0.6, 0.99]$
- study KHI sheath formation for kinetically dominated jets ($\sigma < 0.2$) in stationary cocoon
- explore shear flow profile & turbulence spectrum for particle acceleration…
 - typically $W_{sh}/R_j \sim 0.2 - 0.5$ (transition stage) and $\sim 0.5 - 0.8$ (deep saturation)…
 - Kolmogorov-type ($q \sim 5/3$) turbulence spectra…

![Jet structure and KHI evolution](image1)

![Azimuthally averaged flow velocity profiles](image2)

Parameters:
- $v_j = 0.6c$, $\sigma = 0.002$, $R_0 = 0.1$ kpc, $L_j \approx 1E43$ erg/s
- $\sigma_{l,t} = \langle B^2_{l,t} \rangle / 8\pi\rho_0 c^2$
On continuous electron acceleration in large-scale AGN jets (FR & Duffy 2022)

Developments II

Solve full PTE for cylindrical shear flow without radiative losses

- at ultra-relativistic flow speeds, universal PL index recovered:
 \[f \propto p^{-s} \text{ with } s \rightarrow (3 + \alpha) \]

- at mildly relativistic flow speeds, PL index gets softer & becomes sensitive to flow profile

- 1st-order FP-type approximation possible…

[\[\alpha = 1/3 \]]
Solve full PTE for cylindrical shear flow without radiative losses

- at ultra-relativistic flow speeds, universal PL index recovered: $f \propto p^{-s}$ with $s \rightarrow (3 + \alpha)$
- at mildly relativistic flow speeds, PL index gets softer & becomes sensitive to flow profile
- 1st-order FP-type approximation possible…

allows to constrain flow profile through observed PL index….
On UHECR acceleration in shearing large-scale AGN jets
On gradual shear in mildly relativistic, large-scale AGN jets

Potential for UHECR acceleration:

need jet widths such as to

(1) laterally confine particles,
(2) beat synchrotron losses,
(3) operate within system lifetime

- expect KHI-shaped shear width $\Delta r > 0.1 r_j$

(FR & Duffy 2021)

- for protons $\sim 10^{18}$ eV achievable in jets with relatively plausible parameters (i.e., lengths 10 kpc – 1 Mpc, $B \sim [1–100]$ μG)
- escaping CRs may approach $N(E) \propto E^{-1}$

(FR & Duffy 2021)

(cf. also Liu+ 2017; Wang+2021; Webb+ 2018, 2019)

Figure 2. Allowed parameter range (shaded) for shear acceleration of CR protons to energies $E'_p = 10^{18}$ eV for a particle mean free path $\lambda' \propto p^{\alpha}$ with $\alpha = 1/3$ (corresponding to Kolmogorov type turbulence $q = 5/3$). A flow Lorentz factor $\gamma_b(r_0) = 3$ has been assumed.

$t_{\text{acc,shear}} \propto \gamma^{q-2}$
On gradual shear in mildly relativistic, large-scale AGN jets

(FR & Duffy 2019)

Potential for UHECR acceleration:

need jet widths such as to

1. *laterally confine particles*,
2. *beat synchrotron losses*,
3. *operate within system lifetime*

- expect KHI-shaped shear width $\Delta r > 0.1 r_j$
 (FR & Duffy 2021)

- for protons $\sim 10^{18}$ eV achievable in jets with relatively plausible parameters (i.e., lengths 10 kpc – 1 Mpc, $B \sim [1–100] \mu$G)

- escaping CRs may approach $N(E) \propto E^{-1}$

- proton acceleration to $\sim 10^{20}$ eV in mildly relativistic jets appears quite restricted

(cf. also Liu+ 2017; Wang+2021; Webb+ 2018, 2019)

Figure 2. Allowed parameter range (shaded) for shear acceleration of CR protons to energies $E'_p = 10^{18}$ eV for a particle mean free path $\lambda' \propto p'^{\alpha}$ with $\alpha = 1/3$ (corresponding to Kolmogorov type turbulence $q = 5/3$). A flow Lorentz factor $\gamma_b(r_0) = 3$ has been assumed.

$\left(t_{\text{acc, shear}} \propto \gamma q^{-2} \right)$
On gradual shear in mildly relativistic, large-scale AGN jets

(FR & Duffy 2019)

Figure 2. Allowed parameter range (shaded) for shear acceleration of CR protons to energies $E'_p = 10^{18}$ eV for a particle mean free path $\lambda' \propto p'^\alpha$ with $\alpha = 1/3$ (corresponding to Kolmogorov type turbulence $q = 5/3$). A flow Lorentz factor $\gamma_b(r_0) = 3$ has been assumed.

$$t_{\text{acc,shear}} \propto \gamma^{q-2}$$

Potential for UHECR acceleration:

need jet widths such as to

1. *laterally confine particles*,
2. *beat synchrotron losses*,
3. *operate within system lifetime*

- expect KHI-shaped shear width $\Delta r > 0.1 r_j$
 (FR & Duffy 2021)

- for protons $\sim 10^{18}$ eV achievable in jets with relatively plausible parameters (i.e., lengths $10 \text{ kpc} - 1 \text{ Mpc}$, $B \sim [1-100] \mu \text{G}$)

- escaping CRs may approach $N(E) \propto E^{-1}$

- proton acceleration to $\sim 10^{20}$ eV in mildly relativistic jets appears quite restricted

(cf. also Liu+ 2017; Wang+2021; Webb+ 2018, 2019)

caveat: simplification of spatial transport
Active Galactic Nuclei as Potential Sources of Ultra-High Energy Cosmic Rays

Frank M. Rieger

Abstract: Active Galactic Nuclei (AGNs) and their relativistic jets belong to the most promising class of ultra-high-energy cosmic ray (UHECR) accelerators. This compact review summarises basic experimental findings by recent instruments, and discusses possible interpretations and astrophysical constraints on source energetics. Particular attention is given to potential sites and mechanisms of UHECR acceleration in AGNs, including gap-type particle acceleration close to the black hole, as well as first-order Fermi acceleration at trans-relativistic shocks and stochastic shear particle acceleration in large-scale jets. It is argued that the last two represent the most promising mechanisms given our current understanding, and that nearby FR I type radio galaxies provide a suitable environment for UHECR acceleration.

Keywords: ultra high energy cosmic rays; particle acceleration; radio Galaxies; relativistic jets

1. Introduction

The energy spectrum of cosmic rays runs over more than ten orders of magnitudes, from GeV energies to \(\sim 10^{20} \) eV. While supernova remnants are believed to be the most probable sources of cosmic rays at lower energies (i.e., up to the ‘knee’ at \(\sim 3 \times 10^{15} \) eV) [1,2], the origin of ultra-high-energy cosmic rays (UHECRs, \(E \geq 10^{18} \) eV = 1 EeV) is much less understood. While thought to be of extragalactic origin [3], the real astrophysical sources are still to be deciphered. Possible candidate sources include Active Galactic Nuclei (AGNs)
Particle Acceleration in Astrophysical Shear Flows:

- needs relativistic flow speeds to be efficient (hard spectra)
- depends on seed injection for electrons (e.g., shocks)
- represent a ‘natural’ mechanism in AGN jets
- origin of ultra-relativistic electrons & extended emission
- multiple power-law formation possible…
- spectral shape (PL index) indicative of flow profile…
- large-scale AGN jets as possible UHE accelerators….
Particle Acceleration in Astrophysical Shear Flows:

- needs relativistic flow speeds to be efficient (hard spectra)
- depends on seed injection for electrons (⇒ e.g., shocks)
- represent a ‘natural’ mechanism in AGN jets
- origin of ultra-relativistic electrons & extended emission
- multiple power-law formation possible…
- spectral shape (PL index) indicative of flow profile…
- large-scale AGN jets as possible UHE accelerators….
Summary

Particle Acceleration in Astrophysical Shear Flows:

- needs relativistic flow speeds to be efficient (hard spectra)
- depends on seed injection for electrons (⇒ e.g., shocks)
- represent a ‘natural’ mechanism in AGN jets
- origin of ultra-relativistic electrons & extended emission
- multiple power-law formation possible…
- spectral shape (PL index) indicative of flow profile…
- large-scale AGN jets as possible UHE accelerators….

Thank you ! & Questions ?

MIAPbP Workshop @ IPP Sept 23
HIGH-ENERGY PLASMA PHENOMENA IN ASTROPHYSICS

9 - 20 September 2024
Elena Amato, Andrei M. Beloborodov, Frank Jenko, Anatoly Spitkovsky

In recent years, spurred in large part by the development of first-principles numerical simulations, the plasma astrophysics community has made important strides in understanding the plasma processes relevant for astrophysical systems. The next step, which will be a key topic of the MIAPbP program, is to connect the rich plasma behavior to observed radiative phenomena. These phenomena include old puzzles, e.g. hard X-ray emission from accreting black holes, gamma-ray flares from blazars, cosmic ray acceleration, giant magnetar flares and GRBs. Plasma physics is also key to solving new puzzles such as the cosmological FRBs and gamma-rays from neutron star mergers. The role of plasma instabilities is especially prominent in transient phenomena and strong connections are emerging between plasma physics and time-domain astronomy, a quickly developing observational field. Plasma physics also plays an increasing role in multi-messenger astronomy where main targets are energetic compact objects capable of producing neutrinos, gravitational waves, and nonthermal radiation.

The current efforts to understand plasma behavior lay the foundations for the future of high-energy astrophysics. Within a two-week MIAPbP program, we want to facilitate progress in this direction by bringing together both senior researchers as well as early-career scientists.

Registration open
(Deadline 22 December 2023)