UNDERSTANDING PULSAR WIND NEBULAE

BARBARA OLMI INAF - Osservatorio Astrofisico di Arcetri

HEPRO VIII : High Energy Phenomena in Relativistic Outflows

23-26 Oct 2023 Paris (France)

OCTOBER 22-26 2023

5 2023 PARIS

INTRO: WHAT IS A PWN?

[NOT IN SCALE]

THE DEBRIS OF THE SUPERNOVA EXPLOSION OF A MASSIVE STAR (M≥ 8 M☉)

INGREDIENTS:

THE ROTATING NS = PULSAR THE EJECTA OF THE SN EXPLOSION

THE ENGINE IS THE PULSAR

PULSAR = rotating magnet that slows down due to electromagnetic torque [Pacini 1969]

CLOSED MAGNETOSPHERE

INJECTION FROM THE PULSAR: RELATIVISTIC PARTICLES AND MAGNETIC FIELD

COMPOSITION OF THE PULSAR WIND

PRIMARY PARTICLES - extracted at the star surface [Goldreich & Julian rate]

$$J = \dot{E}/e \sim 2.7 \times 10^{30} \left(\frac{B_{pc}}{10^{12} \, G}\right) \left(\frac{P}{1 \, s}\right)^{-2} \, s^{-1}$$

can be both ions (m_i) or electrons (m_e)

SECONDARY PARTICLES - generated in e.m. cascades in the magnetosphere (leptons only)

ions ~ 1/k electrons

k (pair multiplicity) = secondary/primary electrons ~10⁴-10⁷

$$\left(1 + \frac{m_i}{\kappa m_e}\right)(1 + \sigma)$$

PARTICLE SPECTRUM AND EMISSION

OBSERVED SPECTRAL ENERGY DISTRIBUTION FUNCTION

PARTICLES INJECTION SPECTRUM

PWNe ARE NUMEROUS IN THE GALAXY

KNOWN SYSTEMS (FIRMLY IDENTIFIED - MAINLY AT X-RAYS)

THE FUTURE POPULATION

[Acero, Chernyakova, Olmi, Remy, Tibaldo + CTA coll- GPS paper, submitted]

WHY ARE PWNe INTERESTING?

KNOWN SYSTEMS (FIRMLY IDENTIFIED - MAINLY AT X-RAYS)

- GAMMA-RAY PHYSICS: MOST NUMEROUS EXPECTED POPULATION
- PULSAR PHYSICS: ENCLOSE MOST OF THE ENERGY LOST BY THE PULSAR

L_{radio} ≤10⁻¹⁰É_{psr} WHILE L_{PWN} >0.1Ė_{psr} L_γ ≲0.01Ė_{psr}

- PLASMA PHYSICS: EXTREME CONDITIONS IN CLOSE AND BRIGHT SOURCES AND ACCELERATION IN HOSTILE ENVIRONMENT
- CR PHYSICS: UNIQUE IDENTIFIED PEVATRONS IN THE GALAXY + ANTIMATTER FACTORIES + PARTICLE LEAKAGE + POSSIBLY HADRONIC PEVATRONS

[Olmi 2023]

EVOLUTIONARY PHASES OF PWNe

REVERBERATION

 $t_{esc} \propto (E_{sn}/M_{ej})^{5/6} v_{PSR}^{-5/3} t_{ch}$

POST-REVERBERATION

 $t \approx 2.4 t_{ch}$

[Olmi 2023]

EVOLUTIONARY PHASES OF PWNe

YOUNG SYSTEMS FILL CENTERED MULTI-WAVELENGTHS EMISSION

HIGH RESOLUTION IMAGES SHOWS COMPLEX MORPHOLOGY AT X-RAYS

 $t \approx 2.4 t_{ch}$

ASSUMPTIONS:

- the PW terminates in a strong perpendicular shock
- the flow in the nebula is subsonic
- particle acceleration at the shock
- synchrotron losses beyond the shock PREDICTIONS
- positon of TS \rightarrow R_{TS} ~ R_N(V_N/c)^{1/2} ~ 0.1 pc
- Optical / X-ray spectrum
- size shrinkage with increasing energy

[Rees & Gunn 74, Kennel & Coroniti 84, Emmering & Chevalier 87, Begelman & Li 92, de Jager & Harding 92, Atoyan & Aharonian 96]

EVOLUTIONARY PHASES OF PWNe

YOUNG SYSTEMS FILL CENTERED MULTI-WAVELENGTHS EMISSION

Adapted from Kennel & Coroniti 1984 [Del Zanna & Olmi 2017]

 $t \approx 2.4 t_{ch}$

ANISOTROPIC DISTRIBUTION OF THE ENERGY FLUX IN THE PW MAKES THE TS OBLATE AND ALLOWS FOR THE FORMATION OF THE POLAR JETS SEEN IN THE INNER NEBULA

CORRECT REPRESENTATION OF THE MAGNETIC FIELD ONLY POSSIBLE IN 3D

[Komissarov & Lyubarsky 2003-4, Del Zanna et. al 2004-6, Olmi et al. 2014-15–16, Porth et al 2013-14]

EVOLUTIONARY PHASES OF PWNe

YOUNG SYSTEMS MORE REALISTIC DESCRIPTION

0.8

-3.0

0.0

0.2

0.4

0.6

[Olmi 2023]

EVOLUTIONARY PHASES OF PWNe

[Olmi 2023]

EVOLUTIONARY PHASES OF PWNe

EVOLVED SYSTEMS

Large part of the PSRs have high kick of velocity:

<V_{PSR}>~300 km/s [Faucher-Giguere & Kaspi 2006]

and are then fated to escape their (decelerated) expanding SNR bubble

POST-REVERBERATION

BOW SHOCK PWNe

[Emre et al. 2005]

1

PSR J1509-5850

[Klinger et al. 2018]

[Hui & Becker 2007, Klinger et al. 2016] **SR J1509-5850**

PARTICLES ESCAPING FROM BSPWNe

al.

et

e S

HAWC

Geminga

0

MONOGEM

GEMINGA

LIGHTHOUSE

PSR LUMINOSITY \sim 1.4 \times 10³⁶ erg/s DISTANCE~7 kpc **PSR VELOCITY ~ 800-2400 km/s**

L=0.6 pc

PSR LUMINOSITY \sim 1.27 \times 10³³ erg/s DISTANCE~0.8 kpc PSR VELOCITY ~765 km/s

A DEEPER LOOK TO MISALIGNED X-RAY TAILS

PSR LUMINOSITY $\sim 2.2 \times 10^{34} \text{ erg/s}$ DISTANCE~720 pc PSR VELOCITY \sim 290 km/s

INTERPRETING THE X-RAY FEATURES

Can be explained as synchrotron radiation emitted by particles escaping the nebula, for which you need:

 \mathcal{S}

Particles escape with energy close to the maximum theoretically available one, connected with 2 the pulsar potential drop:

$$\gamma_{\rm MPD} = \frac{e}{mc^2} \sqrt{\frac{\dot{E}}{c}} \simeq 3 \times 10^8 \left(\frac{\dot{E}}{10^{34} \, {\rm erg/s}}\right)$$

A mechanism to amplify the ambient magnetic field, estimated from the transverse size of the feature:

[Bandiera 2008]

-1/3 $\mu \,\mathrm{G}$

HOW TO AMPLIFY THE FIELD?

An efficient way is to excite the non-resonant Bell instability, for which you need:

An electric current J

 $n_{esc} mc^2 \left(\gamma_{esc} - 1\right) \ge B_0^2 / [8\pi]$

The escaping particles to carry an energy density larger than the magnetic energy

[Olmi & Bucciantini 2019-I/II]

 \forall

Class

INJECTING PARTICLES IN THE PULSAR WIND

Electrons and positrons of different energies (1~50 TeV):

 $\gamma = E/[m_ec^2] = [0.5, 1.0, 3.0, 10] \times 10^7$

[Olmi & Bucciantini 2019-III]

10

THE ROLE OF CURRENT SHEETS IN THE TAIL

Particles remain confined in current

[Olmi & Bucciantini 2019-I/II]

ESCAPE OF PARTICLES: HOW AND FROM WHERE

[Olmi & Bucciantini 2019-III]

When the current sheet points towards the CD, particles can escape at reconnection points of the magnetopause

Vpsr

RECONNECTION POINT

B ISM

ESCAPE OF PARTICLES: EFFICIENCY

ENERGY of ESCAPING PARTICLES

γ ~ 10 ⁶	γ ~ 107	γ ~ 10 ⁸
1 TeV	10 TeV	10ns of TeV

confinement

escape

[Olmi & Bucciantini 2019-III]

How efficient the process is depends on the particle energy = its Larmor radius R_{L}

Low energy particles have small R_L, are closely attached to the streamlines and can only escape directly at reconnection points.

High energy particles have large R_L , and efficiently escape in the vicinity of reconnection points.

only particles carrying a large enough fraction of the maximum available energy escape efficiently: $\gamma_{esc} \sim 10-50\% \gamma_{MPD}$

view from the back of the tail

[Olmi & Bucciantini 2019-III]

HOW TO AMPLIFY THE FIELD?

An efficient way is to excite the non-resonant Bell instability, for which you need:

An electric current J

The escaping particles to carry an energy density larger than the magnetic energy density of the ambient medium:

 $n_{esc} mc^2 (\gamma_{esc} -1) \ge B_0^2 / (8\pi)$

Charge separation in the escaping flow makes it possible!

HOW TO AMPLIFY THE FIELD?

An efficient way is to excite the non-resonant Bell instability, for which you need:

An electric current J

The escaping particles to carry an energy density larger than the magnetic energy density of the ambient medium:

[Bandiera, Olmi, Blasi, Amato, in preparation]

Charge separation in the escaping flow makes it possible!

the pulsar luminosity (ϵ) goes into escaping particles:

 $\epsilon \gtrsim 10^{-6} \dot{E}$

CAN WE REACH THE REQUIRED AMPLIFICATION?

The observed synchrotron emission in the feature required a factor ~x5-10 of amplification of the ambient field, that must be reached when the instability saturates:

 $\alpha \rightarrow$ particle pitch angle in the feature

 ΔB `

0.30

CONCLUSIONS

PWNe (or their halos) will dominate the Galactic gamma-ray sky.

Evolved PWNe do show evident leakage of particles in the ambient medium –> formation of features (Xrays / gamma-rays) outside the PWN due to the interaction of the escaping particles with the ambient medium.

In X-rays we see the details of the escaping flow -> understanding their nature may shed light also on the formation of halos. These could be manifestations of the same process, happening in an ambient with different physical conditions!

