Exploring the Impact of Variabilities in Relativistic Jets dynamics

Zakaria Meliani

Observatoire de Paris

F. Tornatore, G. Fichet de Clairfontaine, A. Zechs, J. Malzac

Active galactic nuclei jet

- AGN jets are observed to Mega parsec
- It can be stable to large scale
- Reach a Lorentz factor 3-50
- Magnetic field
- Synchrotron radiation (polarisation)
- Current models focus on GR-SR-MHD

standing and moving radio knots

✓ Standing shocks

• Quasi-stationnary

✓ Moving shock

- ✓ trajectories ballistic
- ✓ trajectories accelerated
- ✓ trajectories bended
- ✓ Trailing components.

Link between flars and shocks

- ✓ Evidence of MWL flare emission during interaction between standing and moving knots (Kim et al. 2020).
- ✓ Apparent displacement of the standing shock
 + increase in brightnes
- ✓ Rotation of EVPAs during such interactions.
- Several interpretations exist to explain such variabilities : interaction between moving and standing knots.

5

Stationnary shocks

The relativistic jet covered a large distances covered in galactic medium

• Jet becomes over pressured

Result

- re-collimation shocks
- Re-acceleration of the jet

Uniform jet

- Equidistance for cylindrical jet
- Increasing distance for the conical jet

Gómez et al 1996, Agudo et al. 2001, Mimica et al. 2009, Fromm et al. 2016, ...

Daly & Marscher 1988

Interaction shock model

Jet

- Relativistic jet with Lorentz factor 3
- Cylindrical jetchecking variations of the Mach number
- Over-pressured jet

Moving shock

- Set at the jet base with Lorentz factor 12
- Radius = 1 jet radius

Electrons population

- Detect the shock regions in the jet by checking variations of the Mach number
- 1.Inject relativistic electrons population at shocks.
- 2.Radiative cooling of electrons

6

Moving shock

Adiabatic acceleration

Phase 2

• Interaction with internal shocks

Phase 3

• Shock wave

Synthetic Image

Moving shocks induces oscillation of knots Oscillating knot responsible for the intense flare.

Radio $\nu = 10^{10}$ Hz

Light curves

Four Different Emitting Zones

- Stationary jet, emitting from electrons (more or less extensive emission).
- Leading moving shock causing flare emission during shock-shock interactions.
- Perturbed standing shocks resulting in remnant emission.
- Relaxation shocks, each with its potential emission signature.

Observational time (year)

Synchrotron flux (mJy)

Relaxation shock formation :

- Moving shock disturbs a standing shock.
- Standing shock relaxes by releasing a new moving shock.

Fichet de Clairfontaine, G. et al. 2022

Relaxation shock

- Relaxation shock velocities always lower than the leading one.
- Apparent motion of perturbed standing shocks.

Variability Induces Internal Shocks

Flicker noise power spectrum (Timmer & König 1995, Malzac, J. 2012)

Variability at jet inlet

$$=2, \Gamma_{max}=2.5.$$

Jet

 $\Gamma_{jet}, \rho_{jet}, p_{jet}$

 ho_{amb} , p_{amb}

Under dense jet $\rho_{jet}/\rho_{amb} = 10^{-3}$; Pressure equiliblrium. Ner & König 1995, Malzac, J. 2012)

Periodic Variability (near the jet inlet)

- Evolving Shock Regions in the Wake of High-Velocity Shells
- Sustaining and Amplifying Mobile Shock Zones Through Injected Variability at t = 100 R/c

-Velocity Shells es Through Injected Variability at t = 100 R/c

Rising of standing shocks

- Jet thermalisation at large scale
- Rising of Slow-Moving Shocks
- Development of slow flow regions

Dynamics of Jet Shockwaves

Downstream

• Turbulent flow

Stationary Shock

- Jet decollimation
- Jet Deceleration and Thermalization

-20

2-

Upstream : Moving Shock Region

- Compression waves
- Moving Shocks

2	-20		0
			2(
		_	190
ž		_	180
		_	170
		_	160
		_	150
		_	140
•		_	130
		_	120
		_	110
		_	100
		_	_06
		_	80
			20
			_9
			_0
			-9
			-0
			0
			0 2
	+		
	0		

Perturbation: Flicker Noise

 Same Behavior as Cases with Periodic Variability

- Downstream Region
 - Reduced Turbulence
 - More Pronounced Quasi-Stationary Shocks

Synthetic Image (Periodic Variability)

$\cdot 5.0$ -2.5

18

Synthetic Image (Flicker Noise)

Meliani, Z. et al. in preparation

Unveiling the Jet through Shock-Shock

- Strong shock-shock interactions result in diverse emission regions.
- Fork events and flare echoes serve as observational indicators of relaxation shocks.
- Characterizing relaxation shocks contributes to constraining jet physics and verifying the plausibility of the "shock-shock" scenario.
- Strong variability at the jet inlet could induce terminal shock and a succession of quasi-stationary shocks.