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Active galactic nuclei jet 

•AGN jets are observed to Mega parsec 

•It can be stable to large scale 

•Reach a Lorentz factor 3-50 

•Magnetic field 

•Synchrotron radiation (polarisation) 

•Current models focus on GR-SR-MHD
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standing and moving radio knots 
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• Quasi-stationnary 

✓Standing shocks

✓  trajectories ballistic 

✓ trajectories accelerated 

✓  trajectories  bended 

✓  Trailing components. 

✓Moving shock 

Phase 3
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Link between flars and shocks

✓Evidence of MWL flare emission during 
interaction between standing and moving 
knots (Kim et al. 2020).  
✓Apparent displacement of the standing shock 
+ increase in brightnes 
✓Rotation of EVPAs during such interactions. 
• Several interpretations exist to explain such variabilities : interaction 
between moving and standing knots. 
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Stationnary shocks 
Gómez et al 1996, Agudo et al. 
2001, Mimica et al. 2009, Fromm 
et al. 2016, …

The relativistic jet covered a  large distances 
covered  in galactic medium
• Jet becomes over pressured

Result 

• re-collimation shocks 
• Re-acceleration of the jet

Uniform jet 

• Equidistance for cylindrical jet  
• Increasing distance for the conical jet

dZ=2MR

Daly & Marscher 1988
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Moving shock

stationnary shocks

Interaction shock model 

Jet

• Relativistic jet with Lorentz factor 3 
• Cylindrical jetchecking variations of the Mach number 
• Over-pressured jet

Moving shock

• Set at the jet base with Lorentz factor 12 
• Radius = 1 jet radius 

Electrons population

• Detect the shock regions in the jet by checking variations of the Mach 
number 

1.Inject relativistic electrons population at shocks.  
2.Radiative cooling of electrons

Jet

Rarefaction zone
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Moving shock

• Adiabatic acceleration

Phase 1

• Interaction with internal shocks

Phase 2

• Shock wave

Phase 3
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Synthetic Image
Moving shocks induces oscillation of knots 
Oscillating knot responsible for the intense 
flare.
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Light curves
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Four Different Emitting Zones
• Stationary jet, emitting from electrons (more or 

less extensive emission). 
• Leading moving shock causing flare emission 

during shock-shock interactions. 
• Perturbed standing shocks resulting in remnant 

emission. 
• Relaxation shocks, each with its potential 

emission signature.
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Relaxation shock formation : 

•Moving shock disturbs a standing shock.  
• Standing shock relaxes by  releasing a 
new moving shock.

Fichet de Clairfontaine, G. et al. 2022
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Relaxation shock 

•Relaxation shock velocities 
always lower than the leading 
one.  

•Apparent motion of perturbed 
standing shocks. 
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Variability Induces Internal Shocks



13 Variability at jet inlet
F(t) = Γjet +

N

∑
i=1

(Γi − Γmin)sin(ωi t)

Flicker noise power spectrum ( Timmer & König 1995, Malzac, J. 2012)
onig , 1995) 

Under dense jet ρjet /ρamb = 10−3; Pressure equiliblrium .

ωmin = 4, ωmax = 10 and Γjet = 3.0 , Γmin = 2,Γmax = 2.5 .
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Periodic Variability (near the jet inlet)

• Evolving Shock Regions in the Wake of High-Velocity Shells
• Sustaining and Amplifying Mobile Shock Zones Through Injected Variability at t = 100 R/c
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Rising of standing shocks

• Jet thermalisation at large scale 
• Rising of Slow-Moving Shocks 
• Development of slow flow regions
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Dynamics of Jet Shockwaves

• Steady shocks 

• Turbulent flow

Upstream  : Moving Shock Region

• Jet decollimation 

• Jet Deceleration and Thermalization

Stationary Shock

• Compression waves 

• Moving Shocks

Downstream 



Perturbation: Flicker Noise
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• Same Behavior as Cases with Periodic 
Variability 

• Downstream Region 
• Reduced Turbulence 
• More Pronounced Quasi-Stationary Shocks



Synthetic Image (Periodic Variability)
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Radio 
X-ray

Moving Shock Region

Extended Radio 
X-ray at the Shock Region 

Stationary Shock

• Steady Shocks with Radio and X-Ray

Downstream 
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Synthetic Image (Flicker Noise)

All Compression Region Emits in 
Radio 
Shock Region Emits in X-ray 

Moving Shock Region

Extended Radio 
X-ray at the Shock Region 

Stationary Shock

• Steady Shocks with Diffuse Radio Emission

Downstream 

Meliani, Z. et al. in preparation
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• Strong shock-shock interactions result in diverse 
emission regions. 

• Fork events and flare echoes serve as observational 
indicators of relaxation shocks. 

• Characterizing relaxation shocks contributes to 
constraining jet physics and verifying the plausibility 
of the "shock-shock" scenario. 

• Strong variability at the jet inlet could induce terminal 
shock and a succession of quasi-stationary shocks.

Unveiling the Jet through Shock-Shock 


