High-Energy Gamma-Ray Emission from Isolated Stellar-Mass Black Hole Magnetospheres

(Kin et al. submitted)

Presenter: Koki Kin (Tohoku U. D1)

with Shota Kisaka (Hiroshima U.), Shigeo S. Kimura (FRIS, Tohoku U.), Kenji Toma (FRIS, Tohoku U.), and Amir Levinson (Tel Aviv U.)

HEPRO 2023

2023.10.26 @ Institut d'Astrophysique de Paris

Contents

◎ Introduction

- Formation of BH Magnetospheres
- Current Structure Charge Distribution in BH Magnetosphere
- Formation of Spark Gap in Charge-Starved Magnetosphere

© Motivation: Detecting Isolated Stellar-Mass BHs via Gamma-rays?

© 1D GRPIC Simulation of Stellar-Mass BH Magnetosphere

© Semi-Analytic Model of Averaged Gamma-Ray Emission from Gap

Summary

Formation of BH Magnetospheres

Magnetosphere

 e^{\pm}

(c)NASA/JPL

as the

В

<Plasma injection>

Theory: primary source = annihilations of disk MeV photons $(\gamma + \gamma \rightarrow e^+ + e^-)$

Disk of accreting gas

Jet

<B-fields transportation>

Theory: gas bring magnetic flux → magnetized gas disk around BHs (Magnetically Arrested Disks, MADs)

EHT's M87 observations: highly-magnetized, poloidal B (consistent w/ MAD GRMHD simus) (c)NASA/JPL

Disk of accreting gas

Current Structure · Charge Distribution in BH Magnetosphere

 \bigcirc sufficient plasma \rightarrow steady EM structure, $E \cdot B = 0$ (e.g. Blandford & Znajek 77)

extraction of BH rotation energy $\rightarrow v \sim c$ plasma flow maintain poloidal current

(Blandford-Znajek process)

- ◎ **far zone:** (–) outflow (connected to the jet)
- near horizon: (+) inflow
 (due to gravity, rapid rotation)

charge & flow separation at $r_{null} \sim 2r_g$

Formation of Spark Gap in Charge-Starved Magnetosphere

 \odot charge-starved \rightarrow time-dependent E-field

© charge-starved due to low MeV photon injection (Levinson & Rieger 11; Levinson & Segev 17; Hirotani & Pu 16 etc...)

 \rightarrow <u>local charge deficiency</u> in magnetosphere

$$n < n_{GJ} (= \left| \rho_{GJ} \right| / e)$$

 \rightarrow displacement current develops

 $\partial_t(E_p) \approx -4\pi (j^r - J_0/r^2)$

local intermittent E-field region (**spark gap**)

Formation of Spark Gap in Charge-Starved Magnetosphere

 \odot charge-starved \rightarrow time-dependent E-field

O charge-starved due to low MeV photon injection (Levinson & Rieger 11; Levinson & Segev 17; Hirotani & Pu 16 etc...)

5/15

 \rightarrow <u>local charge deficiency</u> in magnetosphere

$$n < n_{GJ} (= \left| \rho_{GJ} \right| / e)$$

 \rightarrow displacement current develops

 $\partial_t(E_p) \approx -4\pi (j^r - J_0/r^2)$

local intermittent E-field region (**spark gap**)

efficient acceleration, gamma-ray emission secondary pair creation

^{6/15} **I**solated stellar-mass **B**lack **H**oles via Gamma-Rays?

$\odot \sim \! 10^{7-8}$ undetected IBHs in our Galaxy

 $SFR \times V_{gal} \times t_{galaxy}$ (e.g. Sartore & Treves 10; Caputo et al. 17; Abrams & Takada 20) ~ $10^{-14} \text{pc}^{-3} \text{yr}^{-1} \sim 10^{11} \text{pc}^{3} \sim 10 \text{Gyr}$ for $10M_{\odot}$

- \rightarrow possible interactions w/ Galactic gas clouds
- \rightarrow MAD around IBHs even for

weakly-magnetized gas accretion

(e.g. Ioka et al.17; Kimura et al. 21)

Can we detect gamma rays from IBH "spark gap"?

- implications to **massive star evolution** theory
- Galactic **cosmic ray** origin? (c.f. Ioka et al.17)
- BH spin, B-field strength \rightarrow confirming **BH jet theory**

^{6/15} **I**solated stellar-mass **B**lack **H**oles via Gamma-Rays?

$\odot \sim \! 10^{7-8}$ undetected IBHs in the Galaxy

 $SFR \times V_{gal} \times t_{galaxy}$ (e.g. Sartore & Treves 10; Caputo et al. 17; Abrams & Takada 20) ~ $10^{-14} \text{pc}^{-3} \text{yr}^{-1} \sim 10^{11} \text{pc}^{3} \sim 10 \text{Gyr}$ for $10M_{\odot}$

 \rightarrow possible interactions w/ Galactic gas clouds

 \rightarrow MAD around IBHs even for

weakly-magnetized gas accretion

(e.g. Ioka et al.17; Kimura et al. 21)

Contents

Introduction

- Formation of BH Magnetospheres
- Current Structure · Charge Distribution in BH Magnetosphere
- Formation of Spark Gap in Charge-Starved Magnetosphere

Motivation: Detecting Isolated Stellar-Mass BHs via Gamma-rays?

© 1D GRPIC Simulation of Stellar-Mass BH Magnetosphere

© Semi-Analytic Model of Averaged Gamma-Ray Emission from Gap

©Summary

Simulation Setting

© **1D** • **GRPIC simulation code**

(Levinson & Cerutti18; Kisaka et al.20;22)

$$\frac{du_{\pm}}{dt} = -\sqrt{g_{rr}} \gamma_{\pm} \partial_r(\alpha) + \alpha \left(\frac{q_{\pm}}{m_e} E_r - \frac{P}{m_e v_{\pm}}\right) : e^{\pm} \text{ EoM}$$
gravity
(inertia term) acceleration back reaction
of radiation
$$\frac{dp^r}{dt} = -\sqrt{g^{rr}} p^t \partial_r(\alpha) : \text{ IC photon trajectory}$$

$$\partial_t \left(\sqrt{A}E_r\right) = -4\pi (\Sigma j^r - J_0) : \text{ Ampere's law}$$

$$\partial_r \left(\sqrt{A}E_r\right) = 4\pi \Sigma (j^t - \rho_{GJ}) : \text{ Gauss' law}$$

- IC · <u>secondary</u> pair creation by Monte-Carlo (NOT 'primary' injection via MeV photon annihilation)
- © Kerr spacetime
- © steady, split-monopole B-field

Parameters

$$M = 10M_{\odot}$$
, $a_* = 0.9$, $B_H = 2\pi \times 10^7 \text{G}$
 $\theta = 30^\circ$, $1.5r_g \leq r \leq 4.3r_g$
 $(r_g = \frac{GM}{c^2} \sim 1.5 \times 10^6 M_1 \text{cm})$

Simulation Result: Overall Evolution

Simulation Result: Disk Photon ^{10/15} Intensity Dependence

creatio

γ_e

 $\tau_0 \approx n_{\gamma} \sigma_T r_g \propto \text{disk photon intensity}$: Thomson depth for r_g controlling secondary pair multiplicity $(\tau_{pair} \sim 0.1 \tau_0 \times (\epsilon_{ic} \epsilon_2)^{-1})$

Simulation Result: Disk Photon ^{10/15} Intensity Dependence

Ύe

 $\tau_0 \approx n_{\gamma} \sigma_T r_g \propto \text{disk photon intensity}$: Thomson depth for r_g controlling secondary pair multiplicity $(\tau_{pair} \sim 0.1 \tau_0 \times (\epsilon_{ic} \epsilon_2)^{-1})$

Contents

Introduction

- Formation of BH Magnetospheres
- Current Structure Charge Distribution in BH Magnetosphere
- Formation of Spark Gap in Charge-Starved Magnetosphere

Motivation: Detecting Isolated Stellar-Mass BHs via Gamma-rays?

© 1D GRPIC Simulation of Stellar-Mass BH Magnetosphere

© Semi-Analytic Model of Averaged Gamma-Ray Emission from Gap

Summary

Semi-Analytic Model of Averaged Gamma-Ray Emission from Gap

Opredicting gamma-ray emissivity for wide range of BH mass , gas density

 $\dot{M}(M_{BH}, n_{ISM})$ one-zone IBH MAD model (Kimura et al.21) τ_0 , ϵ_{min} , B_H assuming Bondi accretion

solve EoM, IC photon transfer, pair creations \rightarrow gap boundaries: enough pairs created (consistent w/ simu) maximum Lorentz factor γ_{pk} gamma-ray peak luminosity $L_{cur,pk}$

disk photon

12/15

Semi-Analytic Model of Averaged Gamma-Ray Emission from Gap

Opredicting gamma-ray emissivity for wide range of BH mass , gas density

one-zone IBH MAD model (Kimura et al.21)

assuming Bondi accretion solve EoM, IC photon transfer, pair creations \rightarrow gap boundaries: enough pairs created maximum Lorentz factor γ_{pk} gamma-ray peak luminosity $L_{cur,pk}$

 $\dot{M}(M_{BH}, n_{ISM})$

calculate **persistent gamma-ray spectra** →

disk photon peak energy

 τ_0 , ϵ_{min} , B_H

13/15

Semi-Analytic Model of Averaged Gamma-Ray Emission from Gap

Opredicting gamma-ray emissivity for wide range of BH mass , gas density

13/15

Discussion: strategy

Summary

©Research Motivation: finding undetected isolated BHs through **gamma-ray** observation gas infall \rightarrow formation of **BH magnetosphere**, particle acceleration in **spark gap**?

GeV-TeV gamma rays from BH gap detectable from ~kpc ~a few in Fermi-LAT unID objects, cross-correlation w/ opt~X-ray luminosity variation w/ ~yr timescale?

©Model uncertainty: J_0 fluctuation timescale, lensed photons affect luminosity/lightcurve \dot{M} calculation

©Future work: candidate search, multi-D simulation

Back up

Discussion: expected number of detection in certain gas phase \mathcal{N}_{det}

○ \mathcal{N}_{det} =number of IBHs in gas & sensitive sensitivity limit $d_{i,det}$: luminosity vs ser

$$d_{i,det} = \sqrt{\frac{L_{obs}}{4\pi F_{sen}}} \sim 5 L_{obs,33}^{1/2} F_{sen,-12}^{-1/2} \text{ kpc}$$

$$: \mathcal{N}_{det} \sim n_0 \xi_0 \frac{1 - \gamma}{M_2^{1 - \gamma} - M_1^{1 - \gamma}} M^{1 - \gamma} 2\pi H_{ISM} d_{i,det}^2 \simeq 3$$

 $\begin{pmatrix} \frac{dN}{dM} \propto M^{-\gamma} (\gamma \sim 2.6 \text{ Abbott et al.21}) \\ \xi_0 : \text{Volume filling factor} \\ n_0 \sim \mathcal{R}_{GW} n_{gal}^{-1} H_0^{-1} \sim 2 \times 10^2 \text{kpc}^{-3} : \text{merged BH density} \end{pmatrix} \begin{pmatrix} \prod_{i=1}^{n} e_{i} \\ \sum_{i=1}^{n} e_{i} \\ \prod_{i=1}^{n} e_{i} \\ \sum_{i=1}^{n} e_{i} \\ \sum_{i=1}^{n$

as distr

 10^{1}

M/M_o

۱Ö²

Simulation Results : higher J_0

