Particle Acceleration in Accretion Flows and Related High-energy Signatures

Tohoku University

Shigeo S. Kimura

References:
Murase, SSK, Meszaros, 2020, PRL, 125, 011101
TI-FRIS Kheirandish, Murase, SSK, 2021, ApJ, 922, 45
SSK, Murase, Meszaros, 2021, Nat. Comm., 12, 5615
SSK, Tomida, Murase 2019, MNRAS, 485, 163
SSK et al. in preparation

Index

- Introduction
- IceCube Neutrinos
- Classification of Accretion Flows
- Hadronic emission from AGN Accretion Flows
- Particle Acceleration in Accretion Flows
- Summary

Index

- Introduction
- IceCube Neutrinos
- Classification of Accretion Flows
- Hadronic emission from AGN Accretion Flows
- Particle Acceleration in Accretion Flows
- Summary

Cosmic Neutrino Background Spectrum

- IceCube has been detecting astrophysical neutrinos
- Arrival direction: consistent with isotropic \rightarrow cosmic HE neutrino background
- Soft spectrum: $F_{E_{\nu}} @ \mathrm{TeV}>F_{E_{\nu}} @ \mathrm{PeV}$
- Origin of cosmic neutrinos are a new big mystery

High-energy neutrino production

- Photomeson production (pr)

p
Cosmic ray

- $p+\gamma \rightarrow p+\pi$
- $\pi^{ \pm} \rightarrow 3 v+e$
- $\pi^{0} \rightarrow 2 \gamma$

Gamma-ray Constraint on Neutrino Sources

- Fermi Satellite is measuring cosmic gamma-ray backgrounds
- v flux@10 TeV > γ-ray flux@100 GeV
- Consider sources from which both γ \& v can easily escape \rightarrow fit theory to neutrino data $\rightarrow \gamma$-ray theory $\gg \gamma$-ray data
- γ-ray needs to be absorbed inside the sources (hidden source) $\gamma+\gamma \rightarrow e^{+}+e^{-}$
- X-rays efficiently absorbs $\mathrm{GeV} \gamma$-rays

Evidence of Neutrinos from Seyferts

- NGC 1068 should be hidden sources \rightarrow demands compact emission sites
- EM cascade modeling with γ-ray data: —> Emission region: $R \lesssim 100 R_{S}$
- Possible regions of neutrino emission:
- magnetized accretion flows (coronae)
- Accretion shocks Inoue 2020

Murase, SSK+2020

- disk winds ${ }_{\text {Inoue }+2022}$

SANE \& MAD

- Standard and Normal Evolution (SANE)

- Turbulence driven by MRI
- Weaker jets are launched \rightarrow related to radio-quiet AGNs

Ripperda et al. 2020

- Magnetically Arrested Disk (MAD)

- Strong and ordered magnetic fields
- Powerful jet can be launched
\rightarrow related to radio-loud AGN

SANE \& MAD

- Standard and Normal Evolution (SANE)

- Turbulence driven by MRI
- Weaker jets are launched

\rightarrow related to radio-quiet AGNs

Ripperda et al. 2020

- Magnetically Arrested Disk (MAD)

- Strong and ordered magnetic fields
- Powerful jet can be launched
\rightarrow related to radio=loud AGN

AGN Accretion Flows

- QSO: Blue bump \& X-ray \rightarrow Optically thick disk + coronae
- LLAGN: No blue bump \& X-ray \rightarrow Optically thin flow
Radiatively Inefficient Accretion Flow (RIAF)

Index

- Introduction
- IceCube Neutrinos
- Classification of Accretion Flows
- Hadronic emission from AGN Accretion Flows
- Particle Acceleration in Accretion Flows
- Summary

Magneto-Rotational Instability (MRI)

Gas accretion with angular momentum

Velikhov '59; Balbus \& Hawley '91

\rightarrow formation of rotationally supported disks

SSK et al. 2019, MNRAS
Magnetic energy in $\theta=\pi / 2$ plane

Accretion flows develop MHD turbulence by MRI

Particle Acceleration in Accretion Flows

Particle-In-Cell Simulations in shearing box

Hoshino 2013, 2015; Riquelme et al. 2012; Kuntz et al. 2016

Particle-In-Cell Simulations with turbulence
Comisso \& Sironi 2018, 2019; Zhdankin et al. 2018

Stochastic acceleration

Magnetic reconnection \rightarrow relativistic particle production Interaction with Turbulence \rightarrow further energization

Particle Acceleration in Accretion Flows

Particle-In-Cell Simulations in shearing box
Hoshino 2013, 2015; Riquelme et al. 2012; Kuntz et al. 2016

Particle-In-Cell Simulations with turbulence

Comisso \& Sironi 2018, 2019; Zhdankin et al. 2018

Magnetic reconnection \rightarrow relativistic particle production Interaction with Turbulence \rightarrow further energization

Stochastic Acceleration in MHD Turbulence

CR Acceleration Theory
e.g.) Fermi 1949

Some gain E, others lose E
\rightarrow diffusion in E space

$$
\frac{\partial F_{p}}{\partial t}=\frac{1}{E^{2}} \frac{\partial}{\partial E}\left(E^{2} D_{E} \frac{\partial F_{p}}{\partial E}\right)
$$

AGN Accretion Flow Model

- Equations for cosmic-ray protons

$$
\begin{aligned}
& \frac{\partial F_{p}}{\partial t}=\frac{1}{\varepsilon_{p}^{2}} \frac{\partial}{\partial \varepsilon_{p}}\left(\varepsilon_{p}^{2} D_{\varepsilon_{p}} \frac{\partial F_{p}}{\partial \varepsilon_{p}}+\frac{\varepsilon_{p}^{3}}{t_{p-\mathrm{cool}}} F_{p}\right)-\frac{F_{p}}{t_{\mathrm{esc}}}+\dot{F}_{p, \mathrm{inj}} \\
& D_{\varepsilon_{p}} \approx \frac{\zeta c}{H}\left(\frac{V_{A}}{c}\right)^{2}\left(\frac{r_{L}}{H}\right)^{q-2} \varepsilon_{p}^{2},
\end{aligned}
$$

- Equations for electromagnetic cascades

$$
\frac{\partial n_{\varepsilon_{e}}^{e}}{\partial t}+\frac{\partial}{\partial \varepsilon_{e}}\left[\left(P_{\mathrm{IC}}+P_{\mathrm{syn}}+P_{\mathrm{ff}}+P_{\mathrm{Cou}}\right) n_{\varepsilon_{e}}^{e}\right]=\dot{n}_{\varepsilon_{e}}^{(\gamma \gamma)}-\frac{n_{\varepsilon_{e}}^{e}}{t_{\mathrm{esc}}}+\dot{n}_{\varepsilon_{e}}^{\mathrm{inj}},
$$

Multi-messenger Spectra from NGC 1068

- Possible to explain IceCube data without overshooting γ-ray data
- CR acceleration is suppressed by BH process ($p+\gamma \rightarrow>p+e^{ \pm}$) with UV
- Both pp \& pp (with X-rays) contribute to resulting neutrino flux
- Cascade emission at $\mathbf{1 0} \mathbf{~ M e V}$
\rightarrow Testable by MeV γ ray satellites

Nearby Seyfert galaxies

- Our model predicts $L_{\nu} \propto L_{X}$ -> list up bright v-source candidates

Source
Cen A
Circinus Galaxy
ESO 138-1
NGC 7582
NGC 1068
NGC 4945
NGC 424
UGC 11910
CGCG 164-019
NGC 1275

- Our model predicts that NGC 1068 should be detected first
- This list is based on BASS catalog we need to examine X -ray data quality
- Stacking nearby Seyferts

- Future detectors should detect v from AGN \rightarrow testable by future neutrino experiments

Cosmic High-energy Background from RQ AGNs

γ (Total)

γ by thermal e (RIAFs)
Cascade γ (RIAFs)
Neutrinos (RIAFs)

- - - - Neutrinos (AGN Coronae)

- QSO: X-ray \& 10 TeV neutrinos
- LLAGN: MeV γ \& PeV neutrinos
- Copious photons
\rightarrow efficient $\gamma\rangle \longrightarrow>$ e+e-
\rightarrow strong GeV γ attenuation
\rightarrow GeV flux below the Fermi data
- AGN cores can account for keV-MeV \boldsymbol{p} \& TeV-PeV v background

Index

- Introduction
- IceCube Neutrinos
- Classification of Accretion Flows
- Particle Acceleration in Accretion Flows
- Hadronic emission from AGN Accretion Flows
- Summary

Stochastic Acceleration in MHD Turbulence

CR Acceleration Theory
e.g.) Fermi 1949

Some gain E, others lose E
\rightarrow diffusion in E space

$$
\frac{\partial F_{p}}{\partial t}=\frac{1}{E^{2}} \frac{\partial}{\partial E}\left(E^{2} D_{E} \frac{\partial F_{p}}{\partial E}\right)
$$

We should confirm this by numerical simulations

MHD simulations + Test Particle Simulations

- We used Athena++ \& ATERUI II (XC 30, XC50) @ CfCA, NAOJ for MHD sim.

Stone et al. 2020
SSK et al. 2019 MNRAS
Low resolution: $\left(N_{r}, N_{\theta}, N_{\phi}\right)=(640,320,768)$ with 2 nd-order
SSK et al. in prep
Hish resolution: $\left(N_{r}, N_{\theta}, N_{\phi}\right)=(840,560,1120)$ with 3rd-order
Density

Magnetic field

$$
\begin{aligned}
& \frac{\partial \rho}{\partial T}+\nabla \cdot(\rho \boldsymbol{V})=0, \\
& \frac{\partial(\rho \boldsymbol{V})}{\partial T}+\nabla \cdot\left(\rho \boldsymbol{V} \boldsymbol{V}-\frac{\boldsymbol{B} \boldsymbol{B}}{4 \pi}+P^{*} \mathrm{\square}\right)=-\rho \nabla \Phi, \\
& \frac{\partial E_{\mathrm{tot}}}{\partial T}+\nabla \cdot\left[\left(E_{\mathrm{tot}}+P^{*}\right) \boldsymbol{V}-\frac{\boldsymbol{B} \cdot \boldsymbol{V}}{4 \pi} \boldsymbol{B}\right]=-\rho \boldsymbol{V} \cdot \nabla \Phi, \\
& \frac{\partial \boldsymbol{B}}{\partial T}-\nabla \times(\boldsymbol{V} \times \boldsymbol{B})=0, \\
& \hline
\end{aligned}
$$

- Calculate orbits of $\sim 10^{4}$ particles by solving their equations of motion

$$
\frac{\mathrm{d} \boldsymbol{p}}{\mathrm{~d} t}=\mathrm{e}\left(\boldsymbol{E}+\frac{\boldsymbol{v} \times \boldsymbol{B}}{c}\right)
$$

- We focus on very high energy particles of $\mathrm{E}>\mathrm{PeV}$

MHD simulations + Test Particle Simulations

- We used Athena++ \& ATERUI II (XC 30, XC50) @ CfCA, NAOJ for MHD sim.

Stone et al. 2020
SSK et al. 2019 MNRAS
Low resolution: $\left(N_{r}, N_{\theta}, N_{\phi}\right)=(640,320,768)$ with 2 nd-order

SSK et al. in prep
Hish resolution: $\left(N_{r}, N_{\theta}, N_{\phi}\right)=(840,560,1120)$ with 3rd-order

- Calculate orbits of $\sim 10^{4}$ particles by solving their equations of motion
- We focus on very high energy particles of $\mathrm{E}>\mathrm{PeV}$

$\frac{\partial \rho}{\partial T}+\nabla \cdot(\rho \boldsymbol{V})=0$,
$\frac{\partial(\rho \boldsymbol{V})}{\partial T}+\nabla \cdot\left(\rho \boldsymbol{V} \boldsymbol{V}-\frac{\boldsymbol{B} \boldsymbol{B}}{4 \pi}+P^{*} \mathrm{\square}\right)=-\rho \nabla \Phi$,
$\frac{\partial E_{\mathrm{tot}}}{\partial T}+\nabla \cdot\left[\left(E_{\mathrm{tot}}+P^{*}\right) \boldsymbol{V}-\frac{\boldsymbol{B} \cdot \boldsymbol{V}}{4 \pi} \boldsymbol{B}\right]=-\rho \boldsymbol{V} \cdot \nabla \Phi$,
$\frac{\partial \boldsymbol{B}}{\partial T}-\nabla \times(\boldsymbol{V} \times \boldsymbol{B})=0$,

$$
\frac{\mathrm{d} \boldsymbol{p}}{\mathrm{~d} t}=\mathrm{e}\left(\boldsymbol{E}+\frac{\boldsymbol{v} \times \boldsymbol{B}}{c}\right)
$$

Diffusion in Energy Space

- Low-resolution runs

- Evaluate particle energies in fluid rest frame
- Evolution of Energy distribution function: dispersion $\left(\sigma_{E}^{2}\right)$ increases with time
- High-resolution runs

$$
\frac{\partial f}{\partial t}=\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} D_{p} \frac{\partial f}{\partial p}\right)
$$

Diffusion Coefficients in E space

- Low-resolution runs

- All the particles interact with the largest eddies
- Roughly consistent with analytic estimates
- High-resolution runs

- $D_{E}>D_{T T D}$
- Physical interpretation is still unclear

Diffusion in R space

- Low-resolution runs

- Super-diffusion in all the directions
- High-resolution runs

- Diffusion in R and θ directions
- Super-diffusion in ϕ direction

$$
\sigma_{\Delta R}^{2} \text { depends on resolution }
$$

Sun?

- IceCube discovered evidence of neutrino signal from Seyfert galaxy
- We constructed neutrino emission models from coronae and RIAFs
- Our models can explain IceCube data without contradicting γ-ray data
- MHD + test-particle simulations confirmed that CR particles in accretion flows can be described by diffusion equation in energy space

