Particle Acceleration in Accretion Flows and Related High-energy Signatures

Tohoku University

References: Murase, SSK, Meszaros, 2020, PRL, 125, 011101 Kheirandish, Murase, SSK, 2021, ApJ, 922, 45 SSK, Murase, Meszaros, 2021, Nat. Comm., 12, 5615 SSK, Tomida, Murase 2019, MNRAS, 485, 163 SSK et al. in preparation

HEPRO VIII@Paris Oct. 23 - 27, 2023

TOHOKU UNIVERSITY

Shigeo S. Kimura

- Introduction
 - IceCube Neutrinos
 - Classification of Accretion Flows
- Hadronic emission from AGN Accretion Flows
- Particle Acceleration in Accretion Flows
- Summary

Index

- Introduction - IceCube Neutrinos - Classification of Accretion Flows
- Hadronic emission from AGN Accretion Flows
- Particle Acceleration in Accretion Flows
- Summary

Index

Cosmic Neutrino Background Spectrum

- IceCube has been detecting astrophysical neutrinos
- Arrival direction: consistent with isotropic -> cosmic HE neutrino background
- Soft spectrum: $F_{E_{u}}$ @ TeV > $F_{E_{u}}$ @ PeV
- Origin of cosmic neutrinos are a new big mystery

High-energy neutrino production

π⁰→2γ

Interaction between CRs & photons/nuclei → Neutrino production Gamma-rays inevitably accompanied with neutrinos

Gamma-ray Constraint on Neutrino Sources

- Fermi Satellite is measuring cosmic gamma-ray backgrounds
- v flux@10 TeV > γ -ray flux@100 GeV
- Consider sources from which both γ & v can easily escape \rightarrow fit theory to neutrino data \rightarrow γ -ray theory >> γ -ray data
- y-ray needs to be absorbed inside the sources (hidden source) $\gamma + \gamma \rightarrow e^+ + e^-$
- X-rays efficiently absorbs GeV y-rays

 10^{-6}

GeV

 $E^{2}\phi$

y-ray constraints

- NGC 1068 should be hidden sources
 —> demands compact emission sites
- EM cascade modeling with γ -ray data: —> Emission region: $R \lesssim 100R_S$

- Possible regions of neutrino emission:
 magnetized accretion flows (coronae)
 - Accretion shocks Inoue+ 2020
 - disk winds Inoue+ 2022

Murase 2022

Mu

SANE & MAD

Narayan et al. 2012

SANE & MAD

Narayan et al. 2012

- \rightarrow Optically thick disk + coronae
- \rightarrow Optically thin flow

- Introduction - IceCube Neutrinos - Classification of Accretion Flows
- Hadronic emission from AGN Accretion Flows
- Particle Acceleration in Accretion Flows
- Summary

Index

Magneto-Rotational Instability (MRI)

Gas accretion with angular momentum \rightarrow formation of rotationally supported disks

Velikhov '59; Balbus & Hawley '91

Particle Acceleration in Accretion Flows

ring box

MRI turbulence

Non-thermal tail

Particle-In-Cell Simulatic

Hoshino 2013, 2015; Riquelme et al.

Interaction with Turbulence \rightarrow further energization

Magnetic reconnection \rightarrow relativistic particle production

14

Interaction with Turbulence \rightarrow further energization

Stochastic Acceleration in MHD Turbulence

CR Acceleration Theory

e.g.) Fermi 1949

Some gain E, others lose E \rightarrow diffusion in E space

 $\frac{\partial F_p}{\partial t} = \frac{1}{E^2} \frac{\partial}{\partial E} \left(\frac{E^2 D_E}{E^2 D_E} \frac{\partial F_p}{\partial E} \right)$

p, inj

Equations for cosmic-ray protons

$$\frac{\partial F_p}{\partial t} = \frac{1}{\varepsilon_p^2} \frac{\partial}{\partial \varepsilon_p} \left(\varepsilon_p^2 D_{\varepsilon_p} \frac{\partial F_p}{\partial \varepsilon_p} + \frac{\varepsilon_p^3}{t_{p-\text{cool}}} F_p \right) - \frac{F_p}{t_{\text{esc}}} + H_{p-\text{cool}}$$
$$D_{\varepsilon_p} \approx \frac{\zeta c}{H} \left(\frac{V_A}{c} \right)^2 \left(\frac{r_L}{H} \right)^{q-2} \varepsilon_p^2,$$

Multi-messenger Spectra from NGC 1068

- Possible to explain IceCube data without overshooting γ-ray data
- CR acceleration is suppressed by BH process ($p+\gamma \rightarrow p+e^{\pm}$) with UV
- Both pp & pγ (with X-rays) contribute to resulting neutrino flux
- **Cascade emission at 10 MeV** ->Testable by MeV y ray satellites

Nearby Seyfert galaxies

• Our model predicts $L_{\nu} \propto L_X$ —> list up bright v-source candidates

- Our model predicts that NGC 1068 should be detected first
- This list is based on BASS catalog we need to examine X-ray data quality

• Stacking nearby Seyferts

 Future detectors should detect v from AGN —> testable by future neutrino experiments

Cosmic High-energy Background from RQ AGNs

 γ (Total) Neutrinos (Total) γ by thermal *e* (AGN Coronae) γ by thermal *e* (RIAFs) Cascade γ (AGN Coronae) Cascade γ (RIAFs) Neutrinos (RIAFs) Neutrinos (AGN Coronae)

 $\Phi_{i} = \frac{c}{4\pi H_{0}} \int \frac{dz}{\sqrt{(1+z)^{3}\Omega_{m} + \Omega_{\Lambda}}} \int dL_{\mathrm{H}\alpha} \rho_{\mathrm{H}\alpha} \frac{L_{\varepsilon_{i}}}{\varepsilon_{i}} e^{-\tau_{i,\mathrm{IGM}}},$

- SSK+ 2021

 - **RIAFs**

6

- QSO: X-ray & 10 TeV neutrinos
- LLAGN: MeV y & PeV neutrinos
- Copious photons \rightarrow efficient $\gamma\gamma -> e+e \rightarrow$ strong GeV γ attenuation \rightarrow GeV flux below the Fermi data
- AGN cores can account for keV-MeV y & TeV-PeV v background

See also Murase, SSK+ 2020 PRL; SSK+ 2019, PRD; SSK+ 2015

- Introduction - IceCube Neutrinos - Classification of Accretion Flows
- Particle Acceleration in Accretion Flows
- Hadronic emission from AGN Accretion Flows • Summary

Index

Stochastic Acceleration in MHD Turbulence

CR Acceleration Theory

e.g.) Fermi 1949

Some gain E, others lose E \rightarrow diffusion in E space

 $\frac{\partial F_p}{\partial t} = \frac{1}{E^2} \frac{\partial}{\partial E} \left(\frac{E^2 D_E}{\frac{\partial F_p}{\partial E}} \right)$

We should confirm this by numerical simulations

MHD simulations + Test Particle Simulations 23

• We used Athena++ & ATERUI II (XC 30, XC50) @ CfCA, NAOJ for MHD sim.

Stone et al. 2020

SSK et al. 2019 MNRAS

Low resolution: $(N_r, N_{\theta}, N_{\phi}) = (640, 320, 768)$ with 2nd-order

SSK et al. in prep Hish resolution: $(N_r, N_{\theta}, N_{\phi}) = (840, 560, 1120)$ with 3rd-order Magnetic field Density

- Calculate orbits of ~ 10⁴ particles by solving their equations of motion
- We focus on very high energy particles of E > PeV

$$\frac{\partial \rho}{\partial T} + \nabla \cdot (\rho V) = 0,$$

$$\frac{\partial (\rho V)}{\partial T} + \nabla \cdot \left(\rho V V - \frac{B B}{4\pi} + P^* \mathbb{I}\right) = -\rho \nabla \Phi$$

$$\frac{\partial E_{\text{tot}}}{\partial T} + \nabla \cdot \left[\left(E_{\text{tot}} + P^* \right) V - \frac{B \cdot V}{4\pi} B \right] = -\rho^{\gamma}$$

$$\frac{\partial B}{\partial T} - \nabla \times (V \times B) = 0,$$

MHD simulations + Test Particle Simulations 24

• We used Athena++ & ATERUI II (XC 30, XC50) @ CfCA, NAOJ for MHD sim. Stone et al. 2020

SSK et al. 2019 MNRAS Low resolution: $(N_r, N_{\theta}, N_{\phi}) = (640, 320, 768)$ with 2nd-order

SSK et al. in prep Hish resolution: $(N_r, N_{\theta}, N_{\phi}) = (840, 560, 1120)$ with 3rd-orde

- Calculate orbits of ~ 10⁴ particles by solving their equations of motion
- We focus on very high energy particles of E > PeV

0.4 0.2 0.6

$$\frac{\partial \rho}{\partial T} + \nabla \cdot (\rho V) = 0,$$

er

$$\frac{\partial (\rho V)}{\partial T} + \nabla \cdot \left(\rho V V - \frac{BB}{4\pi} + P^*\mathbb{I}\right) = -\rho \nabla \Phi,$$

o⁻¹

$$\frac{\partial E_{\text{tot}}}{\partial T} + \nabla \cdot \left[\left(E_{\text{tot}} + P^*\right) V - \frac{B \cdot V}{4\pi}B\right] = -\rho V$$

o⁻²

$$\frac{\partial B}{\partial T} - \nabla \times (V \times B) = 0,$$

o⁻³
o⁻⁴

$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = \mathrm{e}\left(\boldsymbol{E} + \frac{\boldsymbol{v}\times\boldsymbol{B}}{c}\right),\,$$

Diffusion Coefficients in E space Low-resolution runs High-resolution runs 10^{0} Simulation Data 10^{-4} Data (A) SSK et al. 2019 MNRAS; SSK et al. in prep. $D_E \propto E^2 (V_A/c)^2$ Data (B) 10^{-1} $D_{TTD} \sim \frac{-}{3} \frac{-}{H}$ Data (C) $D_E \propto E^{1.8}?$ 10^{-5} Data (D) [] 10⁻² $D_{\varepsilon, \text{ FTB}}$ (A) D_E [PeV² 9-01 $D_{\varepsilon, \text{TTD}}$ (A) $\sum_{n=1}^{5} 10^{-3}$ D_{TTD} 10^{-7} 10^{-5} 10^{-6} 10¹⁶ 10² $.10^{15}$ 10³ 10^{1}

ε[PeV]

- All the particles interact with the largest eddies
- Roughly consistent with analytic estimates

Physical interpretation is still unclear

D_F depends on resolution

Low-resolution runs

• Super-diffusion in all the directions

Diffusion in R space

High-resolution runs

- Diffusion in R and θ directions \bullet
- Super-diffusion in ϕ direction

Summary

γ

γ

- IceCube discovered evidence of neutrino signal from Seyfert galaxy
- We constructed neutrino emission models from coronae and RIAFs
- Our models can explain IceCube data without contradicting γ-ray data
- MHD + test-particle simulations confirmed that CR particles in accretion flows can be described by diffusion equation in energy space

