HEPRO8@Paris

Exploring the Origins of UHECRs : Insights from Simulated Relativistic Jets

Jeongbhin Seo* & Dongsu Ryu (Ulsan National Institute of Science & Technology)

Hyesung Kang (Pusan National University)

Jets & Lobes of Giant Radio galaxies: acceleration sites of UHECRs

Hillas criteria: confinement condition

Particles should be confined within accelerator in order to be accelerated. $r_a \leq L$

 $E_{\text{Hillas}}(\text{EeV}) \leq \beta_a \cdot B_{\mu G} L_{\text{kpc}}$ for proton

 $E_{Z_i,\text{Hillas}} = Z_i E_{\text{Hillas}}$ For heavy ions

 Z_i = charge $\beta_a = V_a/c$ $B_{\mu G} = \frac{B}{1\mu G}$ $L_{\rm kpc} = \frac{L}{1kpc}$

Relativistic jets on 10-100 kpc scales:FR-I : $\Gamma_j \sim 1 - 10$, $Q_j \leq 10^{45}$ erg/sFR-II : $\Gamma_j \geq 10$, $Q_j \geq 10^{45}$ erg/s

Most promising candidate for UHECR sources (Ostrowski 1998, Caprioli 2015, Kimura et al. 2018; Rieger 2019; Matthews et al. 2019; Rachen et al 2019, Hardcastle & Croston 2020; + many previous studies)

Two steps: Quantitative numerical estimation of UHECR acceleration in RG jets

Flow structures of simulated relativistic jets

Jet Power: $Q_j = \pi r_i^2 v_j (\Gamma_i^2 \rho_i h_j - \Gamma_j \rho_i c^2)$: key parameter that governs the jet dynamics

4/19

RHD simulations of relativistic jets: shocks, shear, turbulence

Limitations: 1. not MHD simulations

2. MHD turbulence, $\delta B/B$ on subgrid scales not resolved

Parameters	jet spine	backflow	shocked-ICM
$\beta_s = v_s/c$	~ 0.4	$\sim 0.06 - 0.2$	~ 0.01
$\mathcal{L}_{\mathrm{shock}}/Q_j$	~ 0.3	~ 0.4	~ 0.03
$\Omega_{ m shear}/(c/r_j)$	~ 1.5	~ 0.3	~ 0.004
$S_r/(c/r_j)^2$	~ 0.2	~ 0.004	-
$\Omega_{-}/(c/r_{j})$	~ 2.5	~ 0.7	~ 0.005
$\mathcal{L}_{\mathrm{turb}}/Q_j$	~ 0.04	~ 0.2	~ 0.02

Characteristic Properties in Different Regions

- Shocks in jet-spine flow are relativistic, while those in backflow are subrelatativistic.
- Shocks formed in jet-spine flow and backflow are most effective in dissipating the jet kinetic energy.
- Turbulence dissipation is most important in backflow.

Seo et al. 2021b

Monte Carlo simulations for CR transport & acceleration

Seo et al. 2023a, b seed CRs are injected from the host galaxy through the jet nozzle with a radius r_i

 Initially, seed CRs : 10¹³⁻¹⁵eV with a power-law spectrum $dN/dE \propto E^{-2.7}$.

jet inflow

 Particles are continuously advected & energized in the time-evolving jet flows

Prescriptions for magnetic field strength

Internal energy model

 $P_B = \frac{B_p^2}{8\pi} = \frac{P}{\beta_p}$ $\beta_p \approx 100$ plasma beta

Turbulence kinetic energy model $rac{B_{
m turb}^2}{8\pi}pprox {\cal E}_{
m turb}$

b
$$\mathcal{E}_{turb} = \Gamma_{turb}(\Gamma_{turb} - 1)\rho c^2$$

Shock amplification model via Bell instability

$$\frac{B_{Bell}^2}{8\pi} \approx \frac{3}{2} \frac{v_s}{c} P_{CR} \approx \frac{3}{2} \frac{v_s}{c} (0.1 \rho_1 v_s^2)$$
$$\Rightarrow B_{comov} = \max(B_p, B_{turb}, B_{Bell})$$
$$B_{obs} \approx \Gamma B_{comov} \text{ in the simulation frame}$$

Prescriptions for Particle Scattering

mean free path: $\lambda_{\rm mfp} \propto E^{\delta}$

- $E < E_{coh}$: $E_{coh} = eZ_iBL_0$ due to turbulence with Kolmogorov spectrum

- $\Rightarrow \quad \lambda_{\rm mfp} \propto E^{\frac{1}{3}}$
- *E* > *E*_{coh}: Bohm scattering
- $\lambda_{\rm mfp} \propto E$

Bohm scattering at shock zones due to self-generated waves near shocks.

Comparison model

E > **E**_{coh}: non-resonant scattering

 $\rightarrow \lambda_{mf} \propto E^2$

e.g Kimura et al. 2018

Restricted random walk model

In realistic jet flows, there may not be magnetic fluctuations strong enough to scatter in a fully random walk manner for high-energy particles.

$$\delta\theta_{max} = \pi \cdot \min[1, \sim \frac{L_0}{\lambda_f}]$$

-Forward-beamed scattering for HE particles

-Fully isotropic scattering for LE particles $\lambda_f(E) \ll L_0 \quad \delta\theta_{\max} \approx \pi.$

Acceleration Timescales: shock, shear, turbulence

$$\begin{array}{c} \textbf{DSA}\\ \textbf{(shock)} \\ \textbf{DSA} = 3.52 \times 10^{3} \text{yr} \frac{\chi(\chi+1)}{\chi-1} \left(\frac{v_{s}}{c}\right)^{-2} \left(\frac{E}{\text{EeV}}\right) \left(\frac{B}{1\mu\text{G}}\right)^{-1} \\ \textbf{Drury 1983} \\ \textbf{Gradual}\\ \textbf{Shear Acc} \\ \textbf{Gradual}\\ \textbf{Shear Acc} \\ \textbf{t}_{\text{GSA}} = 4.90 \times 10^{4} \text{yr} \frac{1}{(4+\alpha)\gamma^{4}} \left(\frac{\Omega_{\text{shear}}}{c/r_{j}}\right)^{-2} \left(\frac{\lambda_{f}(p)}{\text{kpc}}\right)^{-1} \\ \textbf{Webb et al 2018, Reiger 2019} \\ \textbf{Webb et al 2018, Reiger 2019} \\ \textbf{Webb et al 2018, Reiger 2019} \\ \textbf{t}_{\text{nGSA}} \sim \zeta \frac{\lambda_{f}}{c\Gamma_{Z}^{2}} \beta_{Z}^{2} \\ \textbf{Kimura et al 2018, Caprioli 2015} \\ \textbf{Turbulent} \\ \textbf{Shear Acc} \\ \textbf{TrSA} = 2.88 \times 10^{4} \text{yr} \left(\frac{L_{0}/\gamma}{1\text{kpc}}\right)^{\frac{2}{3}} \left(\frac{|v_{\text{turl}}|}{c}\right)^{-2} \left(\frac{\lambda_{f}(p)}{1/3}\right)^{1/3} \\ \textbf{Ohira 2013} \\ \textbf{diffusive} \\ \textbf{escape time} \\ t_{D} \sim \frac{\left(\frac{W}{2}\right)^{2}}{c\lambda_{f}} \\ \textbf{diffusion time across the cocoon with a width W} \end{array}$$

Relative importance of acceleration processes: approximate estimation

E_{before}

- Exponential cutoff at $Z_i E_{\text{break}} \langle \Gamma \rangle_{\text{spine}}^2$
- $\langle \Gamma \rangle_{\text{spine}}$ is the mean Lorentz factor of the jet-spine flow

within an elongated cocoon

Why double power law ? How to model Break Energy ?

Sphere \rightarrow single power-law with a cutoff Hillas Energy: $E_H \approx 0.9 \ EeV\left(\frac{\langle B \rangle}{1\mu G}\right)\left(\frac{0.5W}{1kpc}\right)$ $E_{\text{break}} \sim E_H$ by confinement condition **Elongated cylinder** (cocoon) \rightarrow double power-law with a cutoff

If
$$t_{nGSA} < t_D$$
, $E_{break} \sim E_H$ Jets with larger $\langle \Gamma_j \rangle$
 E_{max} is limited by the **confinement** condition.

If $t_{nGSA} > t_D$, $E_{break} \sim E_D$ E_{max} is limited by the diffusive escape.

$$t_{\rm nGSA} = t_D \qquad \zeta \frac{\lambda_f}{c\Gamma_z^2 \ \beta_z^2} \sim \frac{(W/2)^2}{c \ \lambda_f}$$

$$E_D \approx E_H \langle \Gamma_z \beta_z \rangle_{\rm acc} \sim \varphi E_H$$

Jets with smaller $\langle \Gamma_i \rangle$

21

double power-law with exp cutoff

Application of our model spectrum to reproduce observations of UHECRs

• Model Source Spectrum at RGs $\frac{dN}{dE_0 dt} = S_0 \left(\left(\frac{E_0}{Z_0 E_b(Q_j)} \right)^{-s_1} + \left(\frac{E_0}{Z_0 E_b(Q_j)} \right)^{-s_2} \right)^{-1} \exp \left(-\frac{E_0}{Z_0 \langle \Gamma_j \rangle^2 E_b(Q_j)} \right)$ Seo et al. in prep

where Q_j , Γ_j , E_0 , Z_0 , and S_0 represent the jet power, the Lorentz factor of the jet, the energy of the particle, the charge of the particle, and the normalization factor of the source function

• Model for Break energy: $E_b(Q_j) = \xi \cdot \varphi \cdot E_H \cdot (Q_j/Q_n)^{\alpha}$

Our RHD & MC simulation results suggest

$$Q_n \approx 3.5 \times 10^{44} \text{ erg/s}, \quad E_H \approx 1.5 \times 10^{19} \text{ eV}, \quad \xi \sim 1$$

 $\langle \Gamma_j \rangle \approx 2 \text{ for FR-I & } \langle \Gamma_j \rangle \approx 10 \text{ for FR-II},$
 $\alpha \approx 1/4 \text{ for FR-I & } \alpha \approx 1/3 \text{ for FR-II},$
 $\varphi \sim 0.3 - 1 \text{ (depending on } \langle \Gamma_j \rangle \text{)}$

• Chemical abundance: 3 x Galactic values (elliptical galaxies) e.g. Kimura et al. 2018

Propagation of UHECRs from RGs to Earth

R. Alves Batista, et al. JCAP (2022) no. 09,

https://crpropa.desy.de/

- 035 In **CRPropa3** simulations, we include the following modules:
- photo-pion Production
- photodisintegration
- electron pair production
 by CMB and extragalactic background light (Gilmore et al. 2012)
- redshift evolution (adiabatic energy loss)

Modeling the contribution from radio galaxies (RGs)

• The total energy of escaped CR particles is proportional to the radio luminosity of RGs. (Godfrey & Shabala, 2013)

$$Q_{\rm FR-I} = 5 \times 10^{44} \left(\frac{L_{151}}{10^{25} \rm W \, Hz^{-1} \, sr^{-1}}\right)^{0.64} \qquad Q_{\rm FR-II} = 1.5 \times 10^{44} \left(\frac{L_{151}}{10^{25} \rm W \, Hz^{-1} \, sr^{-1}}\right)^{0.67}$$

• Modeling for the Lorentz factor for cosmological RG sources (0.1 $\leq z \leq 1$) $\Gamma_c(Q_j, q) = \Gamma_{\min}(Q_j/Q_{\min})^q$ $Q_{\min} = 10^{42} \text{ erg/s}$ $q_1 = 1/5 \text{ for FR-I}; q_2 = 1/3 \text{ for FR-II}$

UHECRs from nearby RG jets

e.g. Virgo A, Cen A

abundance: 3 x Galactic values (elliptical galaxies) e.g. Kimura + 2018

D(Mpc)

Seo et al. in prep

Energy spectrum & mass composition of UHECRs from radio galaxy jets

Shading represents ± 20 % variations of model parameters.

Seo et al. in prep

18/19

- Virgo A with <Γ>~7, may account for a substantial fraction of the observed at TA.
- Cen A with <Γ>~1.2 along with local RGs may account for a substantial fraction of the UHECRs observed at Auger.
- The Lorentz factor of RG jets affects the mass composition, (ln A), of UHECRs observed at Earth as well as at sources.

Source Modeling: 3 components

1. major RGs:

Centaurus A, Fornax A for TA Virgo A, Cygnus A for Auger

- 2. Local RGs (d<300 Mpc): Rachen & Eichmann 2019
- 3. Cosmological Sources: $0.1 \leq z \leq 1$ Mingo et al. 2018

Summary

- The energy spectrum of the UHECRs produced at radio galaxies (RGs) could be modeled as a double power law with an extended exponential cutoff, thanks to RHD & MC simulations. However, a better understanding of the detailed physical processes is crucial.
- Compared to a single power-law with an exponential cutoff at Hillas energy, our source spectrum model results in an observed UHECR spectrum that may extend to higher E and has a lighter (In A) at the highest E.
- Understanding the proprieties of local RGs, such as the Lorentz factor Γ_j , jet power Q_j , radius r_j , magnetic field B, & age of the jet, would be important in modeling the observations of UHECRs.

Supplementary Materials

Kimura et al. 2018

"the shear reacceleration mechanism leads to a hard spectrum of escaping cosmic rays, dLE/dE \propto E⁻¹ – E⁰, distinct from a conventional E⁻² spectrum."

Ostrowski 19998

"the spectrum of particles accelerated at the jet side boundary is expected to be much flatter than the one formed at the shock."

Table 1 Simulation Models for FR-II Jets

Model Name ^a	$Q_j(\text{erg s}^{-1})$	$\eta \equiv rac{ ho_j}{ ho_b}$	$\dot{M}_j(dyne)$	u_j/c	Γ_j	$u_{\rm head}^*/c$	$t_{\rm cross}({\rm yr})$	Grid Zones	$N_j \equiv \frac{r_j \mathbf{b}}{\Delta x}$	$\frac{t_{end}}{t_{cross}}$
Q45-η5-S	3.34E+45	1.E-05	1.15E+35	0.9905	7.2644	0.0409	7.97E+4	$(400)^2 \times 600$	5	176
Q46-η5-Н	3.34E+46	1.E-05	1.13E+36	0.9990	22.5645	0.1180	2.77E+4	$(800)^2 \times 1200$	10	111
Q46-η5-S	3.34E+46	1.E-05	1.13E+36	0.9990	22.5645	0.1180	2.77E+4	$(400)^2 \times 800$	5	200
Q46-η5-L	3.34E+46	1.E-05	1.13E+36	0.9990	22.5645	0.1180	2.77E+4	$(240)^2 \times 360$	3	150
Q47-η5-S	3.34E+47	1.E-05	1.12E+37	0.9999	71.0149	0.2965	1.10E+4	$(400)^2 \times 1000$	5	196

Table 1. Model Parameters of Simulated Jets^a and Fitting Parameters for UHECR Energy Spectrum^b

Model name ^{c}	Q_j	r_{j}	Γ_j	r_c	$t_{\rm cross}$	$t_{ m end}$	s_1	s_2	$E_{\rm break}$	$\Gamma_{\rm fit}$	$E_H{}^d$	$E_D{}^d$	$\langle \Gamma \rangle_{\rm spine}^{d}$
	$(\mathrm{erg}\ \mathrm{s}^{-1})$	(pc)		(pc)	(yrs)	$(t_{\rm cross})$			(eV)		(eV)	(eV)	
Q42-r10	3.5E42	10	3.9	uniform	$2.5\mathrm{E3}$	50	-0.60	-2.50	2.6E18	2.8	4.6E18	2.3E18	2.8
Q43-r10	$3.5\mathrm{E}43$	10	11.2	uniform	8.6E2	50	-0.61	-2.65	$7.5 \mathrm{E}18$	7.1	8.2 E 18	$7.4\mathrm{E}18$	6.0
Q44-r10	$3.5\mathrm{E}44$	10	34.5	uniform	3.0E2	75	-0.64	-2.57	1.7 E19	15.5	1.5 E19	2.3E19	13.4
Q43-r32	3.5E43	31.6	3.9	400	7.9E3	50	-0.56	-2.51	$5.7\mathrm{E}18$	2.5	1.5E19	6.0E18	2.7
Q44-r32	$3.5\mathrm{E}44$	31.6	11.2	400	$2.7\mathrm{E3}$	50	-0.62	-2.70	2.3E19	6.4	2.6E19	2.2E19	5.8
Q45-r32	$3.5\mathrm{E}45$	31.6	34.5	400	9.5E2	65	-0.60	-2.35	4.3E19	15.2	4.6E19	6.4E20	12.9
Q44-r100	3.5E44	100	3.9	1200	$2.5\mathrm{E4}$	50	-0.56	-2.51	1.7E19	2.5	4.6E19	1.8E19	2.7
Q45-r100	$3.5\mathrm{E}45$	100	11.2	1200	8.6E3	50	-0.62	-2.70	7.0E19	6.4	8.2 E 19	7.0E19	5.8

