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Masses In the Stellar Graveyard
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Despite most GW detections were
BH mergers, no clear EM
counterpart was detected.

Solar Masses

This is not surprising; stellar-
mass BHs suffer 'dry' mergers.

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern



And what about binary systems of Supermassive Black
Holes?

How do supermassive black hole
binaries form and evolve?
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formation and accretion history
of SMBHs across cosmic ages.

Adapted from L. Combi’s slides



The NANOGrav 15 yr Data Set: Evidence
for a Gravitational-wave Background
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Contrary to stellar-mass BH binaries, supermassive
black hole binaries would be located in gas-rich
environments

Accretion structure may be quite different from what we know
of single BH accretion disks
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Identifying SMBHBs

merger -> theoretical and observational
problem

e How is the accretion system? How much matter falls into the
cavity and forms a disk?

¢ How much matter is close to the black holes at the merger?
When does the decoupling occur? -> EM bright merger?

e Do SMBHBs produce dual Jets? EM signatures associated?
e Post-merger -> Kicks? Reborn accretion disk and rebrighting?

e Other messengers? Neutrinos or CRs?



THE PROBLEM: Identifying SMBHBs before/during/
after merger -> theoretical and observational
problem

e How is the accretion system? How much matter falls into the
cavity and forms a disk?

e How much matter is close to the black holes at the merger?
When does the decoupling occur? -> EM bright merger?

e Do SMBHBs produce dual Jets? EM signatures associated?
e Post-merger -> Kicks? Reborn accretion disk and rebrighting?

e Other messengers? Neutrinos or CRs?



Adapted from S. Noble’s slides

Proposed EM signatures:

(Graham+ 2015, D’Orazio+
2015, Jun+2015)
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Simulating SMBHB is a multi-scale and highly non-linear
problem

Different numerical

Matter + Gravity strategies and techniques
are applied!
MHD + Newtonian
GR-MHD + Numerical
Relativity

Hopkins, Hernquist,

Di Matteo, Springel++

Viscous Hydro. +
Newtonian Shi & Krolik
(2014-2016) GR-MHD + Post-Newtonian

Kelly++2017
Gold++2014,
Paschalidis++2021

Farris++2014, d'Orazio+

+2015-, Munoz, Miranda, Nf)ble+ +2012- Bower1+ +2018
Lai (2017-2019), Moody+ Lopez Armengol++ Combi++ 2022,
+(2019), Tang+ 2021 Avara++ 2023

+(2017-2019) Adapted from S. Noble’s slides



GRMHD simulations of SMBBHs approaching merger

e For cold disks and q ~ 1, the
accretion system has an overdensit
at the inner cavity, called the ‘lump’

e Formation of minidisks

(Noble+2012, Noble+2021,
Lopez-Armengol+ 2021)

(Bowen+ 2018, 2019, Combi+
2022)



Modulated accretion onto cavity at the beat frequency
between the lump and the disks

Ly D D

Time t ~ Time t+ Porb/z ) Time t + Pbeat
BBH — lump in phase 7 BBH — lump in phase

From R. Mignon-Risse’s slides Porb/2 < Ppeat < Porp
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How massive are minidisks?
e Interplay between ISCO and Hill Sphere

e Hill sphere increases with 7 ~ 0.357,(¢)
separation

e |ISCO decreases with spin

High spin =

y[M]

I
z[M)]

Low spin

(Combi+ 2022)



How massive are minidisks?
e Interplay between ISCO and Hill Sphere
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Calculation of EM emission

Camera-to-source approach
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High-accretion Low-accretion
rate systems rate systems
(Opt. thick) (Opt. thin)

(Noble+ 2007, dAscoli+ 2018, Gutierrez+ 2022)



Different components dominant at different frequencies

FE =4 keV

A =45 nm

E =0.1 keV
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How do circumbinary disks and mini-disks compare with standard
single black hole accretion disks? A "notch™?
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e Circumbinary disk very similar to a truncated Shakura-Sunyaev disk.
e Mini-disks are less bright due to low radiative efficiency. Most of the matter falls into
the hole directly.
e ‘'Notch’ absent due to
® Less bright minidisks
e Stream emission
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https://www.youtube.com/watch?v=6i31B8lUxiw

Optically thin plasma: Kinematic effects are important; Self-
lensing produce strong flares!
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Gutiérrez et al. (2023b, in prep.)


https://www.youtube.com/watch?v=WwLB3Ajd-0I

Highly dependent on the line-of-sight inclination
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Wh at abo ut JetS? Paschalidis et al. (2021) h . UM = 3026

Possibility of dual jets -> EM
signatures?

Important questions: how do
they compare with single
AGN jets? Are they equally
bright? How do the emission
change during merger? ->
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MM merger Soof | d
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Individual jets? Unique jet? L — =09
Simulations show a jet | 7 " Ineeun)
efficiency of ~ 10 % for Zosf || e

spinning black holes
Dual jet interaction?

LJ ~ nefchz

Combi et al. (2022)



Jet-jet interaction: non thermal radiation?
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Radiation from dual jet interaction
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Takeaways

SMBH binaries are very likely multimessenger sources, we need good
-precise- predictions to identify them:
- before, during, and after merger
- very hard problem (need complex and expensive simulations)
- possible signatures: periodic modulations (Doppler boosting, variable
accretion rate, BL shifting, jet precession), periodic flares (self-lensing,
jet-jet interaction?), unique SED features?
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Background slides



Different observational | v =107y B keV ]
strategies needed for
different systems: masses,  0-50
separations, mass ratios 0
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Fora SMBHB of M = 10° M,
short observations every ~ 5 days
and catch the variabilities.

Gutiérrez et al. (2022, ApJ)
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