Ultra-Relativistic Pistons a new type of self-similarity

Tamar Faran (Princeton U), Andrei Gruzinov (NYU) & Re'em Sari (Hebrew U)

Self-Similar solutions

In the absence of `special' dimensional scales:

fluid equations (r, t)

Benefits: mathematical simplicity, sometimes analytical, simple asymptotic behaviour

(Newtonian) Strong explosion problem

 $\frac{R_{sh}(t) \propto t^{\alpha(k)}}{\rho_0 \propto r^{-k}}$

(Newtonian) Strong explosion problem

$$\begin{array}{ll} \text{Similarity} & \text{Similarity} \\ \text{variable} & r \\ \xi = \frac{r}{R_{sh}(t)}, & \alpha(k) = \end{array}$$

$$(t) \propto t^{\alpha(k)}$$
$$\rho_0 \propto r^{-k}$$

= ?

 $\rho_0 \propto r^{-k}, \ R_{sh}(t) \propto t^{\alpha}$

First type **Dimensional analysis**

Energy conservation

 $\int_{-\infty}^{R_{sh}} \epsilon \, dV \propto t^{\alpha(5-k)-2} I(\xi) = constant$

$$\alpha = \frac{2}{5-k}$$

Sedov-von Neumann-Taylor

 $\rho_0 \propto r^{-k}, \ R_{sh}(t) \propto t^{\alpha}$

First type **Dimensional analysis**

Energy conservation

$$\int_{0}^{R_{sh}} \epsilon \, dV \propto t^{\alpha(5-k)-2} I(\xi) = constant$$

divergentiation of the second standard divergentiation of the second standard divergence of the second standard divergen

Sedov-von Neumann-Taylor

S

 $\rho_0 \propto r^{-k}, \ R_{sh}(t) \propto t^{\alpha}$

First type **Dimensional analysis**

Energy conservation

 $\rho_0 \propto r^{-k}, \ R_{sh}(t) \propto t^{\alpha}$

First type **Dimensional analysis**

Energy conservation

Second type **Eigenvalue problem**

Shock loses causal contact with blast wave

> Eliminate singularity in ODEs

> > (α numerical)

Waxman & Shvartz 1993

 $\rho_0 \propto r^{-k}, \ R_{sh}(t) \propto t^{\alpha}$

First type **Dimensional analysis**

Energy conservation

Second type **Eigenvalue problem**

Shock loses causal contact with blast wave

if k<3.25 ! Eliminate singularity in ODEs

(α numerical)

Waxman & Shvartz 1993

 $\rho_0 \propto r^{-k}, \ R_{sh}(t) \propto t^{\alpha}$

outside domain

First type **Dimensional analysis**

Energy conservation

Second type **Eigenvalue problem**

Shock loses causal contact with blast wave

if k<3.25 ! Eliminate singularity in ODEs

(α numerical)

outside domain

Waxman & Shvartz 1993

 $\rho_0 \propto r^{-k}, \ R_{sh}(t) \propto t^{\alpha}$

First typeDimensional analysis

Energy conservation

Sedov-von Neumann-Taylor

Shock loses causal contact with blast wave

Eliminate ^{if k<3.25 !} singularity in ODEs

(α numerical)

k>3.25

outside domain

Waxman & Shvartz 1993

an infinitely heavy piston (lies outside self-similar domain)

$v = const \rightarrow \alpha - 1 = 0$

Type III: self-similar exponents determined by the non self-similar part of the flow

an infinitely heavy piston (lies outside self-similar domain)

 $v = const \rightarrow \alpha - 1 = 0$

Type III: self-similar exponents determined by the non self-similar part of the flow

an infinitely heavy piston (lies outside self-similar domain)

 $v = const \rightarrow \alpha - 1 = 0$

k Trivial type III

Ultra-relativistic blast waves

$\sum_{sh}^{2} (t) \propto t^{-m(k)}$ $\int_{0}^{2} \rho_{0} \propto r^{-k}$

(UR) Strong explosion problem

Strong explosion problem

 P, γ, ρ $R_{sh} \sim t \qquad \Gamma_{sh}^2(t) \propto t^{-m(k)}$ $\rho_0 \propto r^{-k}$

(In plane-parallel geometry)

(UK)Strong explosion problem

$$E \sim \int_{0}^{R_{sh}} 4\gamma^2 P dr \propto t^{1-m-k} \chi^{\frac{4k-7}{3(2-k)}} \Big|_{1}^{\infty}$$

 $\Gamma^2_{sh}(t) \propto t^{-m(k)}, \rho_0 \propto r^{-k}$

$$E \sim \int_{0}^{R_{sh}} 4\gamma^2 P dr \propto t^{1-m-k} \chi^{\frac{4k-7}{3(2-k)}} \Big|_{1}^{\infty}$$

$\longrightarrow m = 1 - k$ constant E

 $\Gamma_{sh}^2(t) \propto t^{-m(k)}, \rho_0 \propto r^{-k}$

$$E \sim \int_{0}^{R_{sh}} 4\gamma^2 P dr \propto t^{1-m-k} \chi^{\frac{4k-7}{3(2-k)}} \Big|_{1}^{\infty}$$

 $\Gamma_{sh}^2(t) \propto t^{-m(k)}, \rho_0 \propto r^{-k}$

$$E \sim \int_{0}^{R_{sh}} 4\gamma^2 P dr \propto t^{1-m-k} \chi^{\frac{4k-7}{3(2-k)}} \Big|_{1}^{\infty}$$

Second type solutions (e.g., Sari 2006)

 $\Gamma_{sh}^2(t) \propto t^{-m(k)}, \rho_0 \propto r^{-k}$

$$E \sim \int_{0}^{R_{sh}} 4\gamma^2 P dr \propto t^{1-m-k} \chi^{\frac{4k-7}{3(2-k)}} \Big|_{1}^{\infty}$$

Second type solutions (e.g., Sari 2006)

 $g\chi_{singular} = 4 - 2\sqrt{3}$ Eigenvalue $\gamma^2 = \Gamma_{sh}^2 g(\chi)$ problem

 $\Gamma_{sh}^2(t) \propto t^{-m(k)}, \rho_0 \propto r^{-k}$

$$E \sim \int_{0}^{R_{sh}} 4\gamma^2 P dr \propto t^{1-m-k} \chi^{\frac{4k-7}{3(2-k)}} \Big|_{1}^{\infty}$$

Second type solutions (e.g., Sari 2006)

 $g\chi_{singular} = 4 - 2\sqrt{3}$ Eigenvalue $\gamma^2 = \Gamma_{sh}^2 g(\chi)$ problem

$$\longrightarrow m = (3 - 2\sqrt{3})k$$

eliminate singularity

 $\Gamma_{sh}^2(t) \propto t^{-m(k)}, \rho_0 \propto r^{-k}$

$$E \sim \int_{0}^{R_{sh}} 4\gamma^2 P dr \propto t^{1-m-k} \chi^{\frac{4k-7}{3(2-k)}} \Big|_{1}^{\infty}$$

Second type solutions (e.g., Sari 2006)

 $g\chi_{singular} = 4 - 2\sqrt{3}$ $\gamma^{2} = \Gamma^{2}_{sh}g(\chi)$ Eigenvalue problem

$$\longrightarrow m = (3 - 2\sqrt{3})k$$

 $\longrightarrow k > 2$

eliminate singularity

singularity in domain

$$\Gamma_{sh}^2(t) \propto t^{-m(k)} , \rho_0 c$$

$$E \sim \int_{0}^{R_{sh}} 4\gamma^2 P dr \propto t^{1-m-k} \chi^{\frac{4k-7}{3(2-k)}} \Big|_{1}^{\infty}$$

Second type solutions (e.g., Sari 2006)

 $g\chi_{singular} = 4 - 2\sqrt{3}$ $\gamma^{2} = \Gamma^{2}_{sh}g(\chi)$ Eigenvalue problem

$$\rightarrow m = 1 - k$$
 constant E
 $\rightarrow k < 7/4$ finite E

$$\longrightarrow m = (3 - 2\sqrt{3})k$$

eliminate singularity

singularity in domain

$$\Gamma_{sh}^2(t) \propto t^{-m(k)} , \rho_0 c$$

$$E \sim \int_{0}^{R_{sh}} 4\gamma^2 P dr \propto t^{1-m-k} \chi^{\frac{4k-7}{3(2-k)}} \Big|_{1}^{\infty}$$

Second type solutions (e.g., Sari 2006)

 $g\chi_{singular} = 4 - 2\sqrt{3} \\ \gamma^2 = \Gamma_{sh}^2 g(\chi)$ Eigenvalue problem

Solution gap: 7/4<k<2

$$\rightarrow m = 1 - k$$
 constant E
 $\rightarrow k < 7/4$ finite E

$$\longrightarrow m = (3 - 2\sqrt{3})k$$

eliminate singularity

$$\Gamma_{sh}^2(t) \propto t^{-m(k)} , \rho_0 c$$

Third type solutions: 7/4<k<2 (Faran, Gruzinov, Sari)

 $\Gamma_{sh}^2(t) \propto t^{-m}$ $\rho_0 \propto r^{-k}$

Third type solutions: 7/4<k<2 (Faran, Gruzinov, Sari)

 $\Gamma_{sh}^2(t) \propto t^{-m}$ $\rho_0 \propto r^{-k}$

non-trivial type III

Third type solutions: 7/4<k<2 (Faran, Gruzinov, Sari)

k

 $\Gamma_{sh}^2(t) \propto t^{-m}$ $\rho_0 \propto r^{-k}$

0

()

 $Q, \alpha, \beta(m, k)$ diverging energy Expansion into vacuum $p(0) \rightarrow 0$, $\gamma^2(0) \rightarrow \infty$ x = t - r

()

0

Exact solution (inspired by Landau & Lifshitz)

UR fluid eqns

$$\begin{cases} 4\frac{\partial\gamma^2 p}{\partial t} + \frac{\partial p}{\partial x} = 0\\ \frac{\partial p}{\partial t} + \frac{\partial p/\gamma^2}{\partial x} = 0 \end{cases}$$

$$x = t - r$$

Exact solution (inspired by Landau & Lifshitz)

UR fluid eqns

x = t - r

Klein-Gordon eqn

 $\partial_{uv}\psi$

 $\{u, v\}$: Riemann invariants

Exact solution (inspired by Landau & Lifshitz)

UR fluid eqns

x = t - r

Klein-Gordon eqn

 $\partial_{uv}\psi$

 $\{u, v\}$: Riemann invariants

Applying boundary conditions on C_+ :

$$\psi = -\sum_{n=1}^{\infty} \frac{(\nu/\lambda)^n}{n!} \sum_{k=0}^{n-1} \frac{(u\lambda)^k}{k!}$$

Exact solution describing expansion into vacuum

Ψ	α

 $\propto \begin{cases} e^{\lambda u + v/\lambda}, v \gg u\lambda^2 & \text{powerlaw asymptotic} \\ e^{2\sqrt{uv}}, v \ll u\lambda^2 & \text{profile containing } p_{max} \end{cases}$

 $\lambda(m,k)$

Ψ	α

 $\propto \begin{cases} e^{\lambda u + v/\lambda}, v \gg u\lambda^2 & \text{powerlaw asymptotic} \\ e^{2\sqrt{uv}}, v \ll u\lambda^2 & \text{profile containing } p_{max} \end{cases}$

 $\lambda(m,k)$

Ψ	α

 $\propto \begin{cases} e^{\lambda u + v/\lambda}, v \gg u\lambda^2 & \text{powerlaw asymptotic} \\ e^{2\sqrt{uv}}, v \ll u\lambda^2 & \text{profile containing } p_{max} \end{cases}$

 $\lambda(m,k)$

Ψ	α

 $\propto \begin{cases} e^{\lambda u + v/\lambda}, v \gg u\lambda^2 & \text{powerlaw asymptotic} \\ e^{2\sqrt{uv}}, v \ll u\lambda^2 & \text{profile containing } p_{max} \end{cases}$

 $\lambda(m,k)$

What is the condition on m(k)?

What is the condition on m(k)?

What is the condition on m(k) ?

What is the condition on m(k)?

What is the condition on m(k)?

$$\frac{du}{dv}\Big|_{sh} = \frac{2m + \sqrt{3}(m+k)}{-2m + \sqrt{3}(m+k)} \le \frac{1}{\lambda^2}$$

What is the condition on m(k) ?

$$\frac{du}{dv}\Big|_{sh} = \frac{2m + \sqrt{3}(m+k)}{-2m + \sqrt{3}(m+k)} \le \frac{1}{\lambda^2}$$

What is the condition on m(k) ?

$$\frac{du}{dv}\Big|_{sh} = \frac{2m + \sqrt{3}(m+k)}{-2m + \sqrt{3}(m+k)} \le \frac{1}{\lambda^2}$$

$$\int \\ m_{\text{III}} = -4\sqrt{3(k-1)} + 3k$$

The gap is closed

 $\Gamma_{sh}^2(t) \propto t^{-m}$ $\rho_0 \propto r^{-k}$

Summary Refined classification: Type II Type I Eigenvalue problem **Dimensional considerations** within self-similar

New universal exponents for expansion into vacuum

$$P_{\rm max} \propto t^{-1} \qquad \qquad x_{\rm max} \propto t^{1/4}$$

Type III

domain

Self-similar exponents determined by non self-similar flow

 $\gamma^2(x_{\rm max}) \propto t^{3/4}$

