On the physics of the most luminous gamma-ray emitting binaries

Valenti Bosch-Ramon

Universitat de Barcelona, ICCUB, IEEC

High Energy Phenomena in Relativistic Outflows VIII

Institut d’Astrophysique de Paris, Observatoire de Paris
October 23, 2023
Outline

1. Introduction
2. Binary scales
3. Beyond binary scales
4. Discussion
Talk focus

- Focus on high-mass γ-ray binaries (HMGB) with NS/BH + relativistic outflow (see right).
- We will not discuss phenomenology (orbit, SED, lightcurves, morphology...); examples:
- We will not discuss other related classes (rel. LMGB, massive star binaries, novae...).
- We will discuss physical processes underlying the non-thermal activity.
Talk focus

- Focus on high-mass γ-ray binaries (HMGB) with NS/BH + relativistic outflow (see right).
- We will not discuss phenomenology (orbit, SED, lightcurves, morphology...); examples:

 \begin{itemize}
 \item (Paredes et al. 2000; Casares et al. 2005a; Aharonian et al. 2006; Takahashi et al. 2009; Hadasch et al. 2012; Chang et al. 2016; Yoneda et al. 2021)
 \end{itemize}

- We will not discuss other related classes (rel. LMGB, massive star binaries, novae...).

- We will discuss physical processes underlying the non-thermal activity.
Talk focus

- Focus on high-mass γ-ray binaries (HMGB) with NS/BH + relativistic outflow (see right).
- We will not discuss phenomenology (orbit, SED, lightcurves, morphology...); examples:
- We will not discuss other related classes (rel. LMGB, massive star binaries, novae...).
- We will discuss physical processes underlying the non-thermal activity.
Talk focus

- Focus on high-mass γ-ray binaries (HMGB) with NS/BH + relativistic outflow (see right).
- We will not discuss phenomenology (orbit, SED, lightcurves, morphology...); examples:
- We will not discuss other related classes (rel. LMGB, massive star binaries, novae...).
- We will discuss physical processes underlying the non-thermal activity.
Motivation

- Large NT power: at least $\sim 10^{37}$ erg s$^{-1}$ (or more) in most of the sources.
- Acceleration rates close to $\sim qBR$ for e^{\pm}, up to ~ 100 TeV, on binary scales (mostly).
- Interplay of orbit, V_{ISM}, outflow/medium interaction leads to rich physics.
- Binary and large scale non-thermal activity (synchr., IC, CR... even ν?).

(Koljonen+23 ↑; Khangulyan+08 -LS 5039- ↓; Corbet+16 -LMC P3- →)

(Rho -SS433-, VGGRS VI →)
Motivation

- Large NT power: at least $\sim 10^{37} \text{ erg s}^{-1}$ (or more) in most of the sources.
- Acceleration rates close to $\sim qBR$ for e^{\pm}, up to ~ 100 TeV, on binary scales (mostly).
- Interplay of orbit, V_{ISM}, outflow/medium interaction leads to rich physics.
- Binary and large scale non-thermal activity (synchr., IC, CR... even ν?).

(Koljonen+23 \uparrow; Khangulyan+08 -LS 5039- \downarrow; Corbet+16 -LMC P3- \rightarrow)

(Rho -SS433-, VGGRS VI \rightarrow)
Motivation

- **Large NT power**: at least $\sim 10^{37}$ erg s$^{-1}$ (or more) in most of the sources.

- **Acceleration rates close to** $\sim qBR$ for e^\pm, up to ~ 100 TeV, on binary scales (mostly).

- **Interplay of orbit, V_{ISM}, outflow/medium interaction leads to rich physics.**

- **Binary and large scale non-thermal activity** (synchr., IC, CR... even ν?).

(Koljonen+23 ↑; Khangulyan+08 -LS 5039- ↓; Corbet+16 -LMC P3- →)

(Rho -SS433-, VGGRS VI →)
Motivation

- Large NT power: at least \(\sim 10^{37} \text{ erg s}^{-1} \) (or more) in most of the sources.
- Acceleration rates close to \(\sim qBR \) for \(e^\pm \), up to \(\sim 100 \text{ TeV} \), on binary scales (mostly).
- Interplay of orbit, \(v_{\text{ISM}} \), outflow/medium interaction leads to rich physics.
- Binary and large scale non-thermal activity (synchr., IC, CR... even \(\nu \)?).

(Koljonen+23 ↑; Khangulyan+08 -LS 5039- ↓; Corbet+16 -LMC P3- →)

(Rho -SS433-, VGGRS VI →)
Relevant physical factors

- Relativistic HMGB, accreting or not, are the most luminous γ-ray emitting binaries and share the most important elements:
 - Relativistic outflows (winds and jets).
 - Dense radiation field.
 - Substantial and structured stellar wind.
 - Relativistic effects.
 - Shocks, instabilities and mixing.
 - Magnetic fields.
 - Orbital motion and eccentricity.

(BINARY SCALES)

(B-EYOND BINARY SCALES)

- Large scale interactions.

(B-R & Barkov 2016 -MQ-)

(Zabalza et al. 2013-PSR-)

V. Bosch-Ramon (UB)

On the physics of gamma-ray binaries

October 23, 2023 6/19
Relevant physical factors

Relativistic HMGB, accreting or not, are the most luminous γ-ray emitting binaries and share the most important elements:

- **Relativistic outflows (winds and jets).** (BINARY SCALES)
- Dense radiation field.
- Substantial and structured stellar wind.
- Relativistic effects.
- Shocks, instabilities and mixing.
- Magnetic fields.
- Orbital motion and eccentricity. (BEYOND BINARY SCALES)
- Large scale interactions.

(B-R & Barkov 2016 -MQ-)

(Zabalza et al. 2013-PSR-)
Relevant physical factors

- Relativistic HMGB, accreting or not, are the most luminous γ-ray emitting binaries and share the most important elements:
 - Relativistic outflows (winds and jets).
 - Dense radiation field.
 - Substantial and structured stellar wind.
 - Relativistic effects.
 - Shocks, instabilities and mixing.
 - Magnetic fields.
 - Orbital motion and eccentricity.
 - Large scale interactions.

(BINARY SCALES)

(B-R & Barkov 2016 -MQ-)

-Zabalza et al. 2013-PSR-
Relevant physical factors

- Relativistic HMGB, accreting or not, are the most luminous γ-ray emitting binaries and share the most important elements:
 - Relativistic outflows (winds and jets).
 - Dense radiation field.
 - Substantial and structured stellar wind.
 - Relativistic effects.
 - Shocks, instabilities and mixing.
 - Magnetic fields.
 - Orbital motion and eccentricity.
 - Large scale interactions.

(BINARY SCALES)

(B-Zabalza et al. 2013-PSR-)

V. Bosch-Ramon (UB)
On the physics of gamma-ray binaries
October 23, 2023
Relevant physical factors

- Relativistic HMGB, accreting or not, are the most luminous γ-ray emitting binaries and share the most important elements:
 - Relativistic outflows (winds and jets). (BINARY SCALES)
 - Dense radiation field.
 - Substantial and structured stellar wind.
 - Relativistic effects.
 - Shocks, instabilities and mixing.
 - Magnetic fields.
 - Orbital motion and eccentricity. (BEYOND BINARY SCALES)
 - Large scale interactions.
Relevant physical factors

- Relativistic HMGB, accreting or not, are the most luminous γ-ray emitting binaries and share the most important elements:

 - Relativistic outflows (winds and jets).
 - Dense radiation field.
 - Substantial and structured stellar wind.
 - Relativistic effects.
 - Shocks, instabilities and mixing.
 - Magnetic fields.
 - Orbital motion and eccentricity.

(BINARY SCALES)

(BEYOND BINARY SCALES)

Large scale interactions.

(B-R & Barkov 2016 -MQ-)

(Zabalza et al. 2013-PSR-)
Relevant physical factors

- Relativistic HMGB, accreting or not, are the most luminous γ-ray emitting binaries and share the most important elements:
 - Relativistic outflows (winds and jets). *(BINARY SCALES)*
 - Dense radiation field.
 - Substantial and structured stellar wind.
 - Relativistic effects.
 - Shocks, instabilities and mixing.
 - Magnetic fields.
 - Orbital motion and eccentricity. *(BEYOND BINARY SCALES)*
 - Large scale interactions.

(B-R & Barkov 2016 -MQ-)
(Zabalza et al. 2013-PSR-)
Relevant physical factors

- Relativistic HMGB, accreting or not, are the most luminous γ-ray emitting binaries and share the most important elements:
 - Relativistic outflows (winds and jets).
 - Dense radiation field.
 - Substantial and structured stellar wind.
 - Relativistic effects.
 - Shocks, instabilities and mixing.
 - Magnetic fields.
 - Orbital motion and eccentricity.
 - Large scale interactions.

(BINARY SCALES)

(BEYOND BINARY SCALES)

(B-R & Barkov 2016 -MQ-)
Relevant physical factors

- Relativistic HMGB, accreting or not, are the most luminous γ-ray emitting binaries and share the most important elements:
 - Relativistic outflows (winds and jets).
 - Dense radiation field.
 - Substantial and structured stellar wind.
 - Relativistic effects.
 - Shocks, instabilities and mixing.
 - Magnetic fields.
 - Orbital motion and eccentricity.
 - Large scale interactions.

(BINARY SCALES)

(BEYOND BINARY SCALES)

(B-R & Barkov 2016 -MQ-)

(Zabalza et al. 2013-PSR-)
In a HMMQ:

- A jet can form, protected from the stellar wind by an accretion wind.
- Magnetization, content, and velocity are unclear, possibly structured.
- The jet can already suffer internal or recollimation shocks, and mass-load.

In a non-accreting pulsar:

- Pulsar wind likely magnetized, anisotropic, and ultrarelativistic.
- The pulsar wind is accelerated by B dissipation; how fast is it?
- Highly relativistic unshocked flow in a dense photon field plus e^\pm-creation:
- IC and 1-shot converter mechanism?

(Barkov & Khangulyan 2012-MQ-)

(Cerutti et al. 2020-PSR-)

(Derishev & Aharonian 2012)
Relativistic outflows: winds and jets

In a HMMQ:

- A jet can form, protected from the stellar wind by an accretion wind.
- Magnetization, content and velocity are unclear, possibly structured.
- The jet can already suffer internal or recollimation shocks, and mass-load.

In a non-accreting pulsar:

- Pulsar wind likely magnetized, anisotropic and ultrarelativistic.
- The pulsar wind is accelerated by B dissipation; how fast is it?
- Highly relativistic unshocked flow in a dense photon field plus e^\pm-creation:
 - IC and 1-shot converter mechanism?

(Derishev&Aharonian12)

(Barkov & Khangulyan 2012-MQ-)

(Cerutti et al. 2020-PSR-)
Relativistic outflows: winds and jets

In a HMMQ:
- A jet can form, protected from the stellar wind by an accretion wind.
- Magnetization, content and velocity are unclear, possibly structured.
- The jet can already suffer internal or recollimation shocks, and mass-load.

In a non-accreting pulsar:
- Pulsar wind likely magnetized, anisotropic and ultrarelativistic.
- The pulsar wind is accelerated by B dissipation; how fast is it?
- Highly relativistic unshocked flow in a dense photon field plus e^\pm-creation:
- IC and 1-shot converter mechanism?

(Barkov & Khangulyan 2012-MQ-)
(Cerutti et al. 2020-PSR-)

(Derishev&Aharonian12)
Relativistic outflows: winds and jets

In a HMMQ:
- A jet can form, protected from the stellar wind by an accretion wind.
- Magnetization, content and velocity are unclear, possibly structured.
- The jet can already suffer internal or recollimation shocks, and mass-load.

In a non-accreting pulsar:
- Pulsar wind likely magnetized, anisotropic and ultrarelativistic.
- The pulsar wind is accelerated by B dissipation; how fast is it?
- Highly relativistic unshocked flow in a dense photon field plus e^\pm-creation:
- IC and 1-shot converter mechanism?

(Derishev&Aharonian12)

(Barkov & Khangulyan 2012-MQ-)

(Cerutti et al. 2020-PSR-)
Relativistic outflows: winds and jets

In a HMMQ:

- A jet can form, protected from the stellar wind by an accretion wind.
- Magnetization, content and velocity are unclear, possibly structured.
- The jet can already suffer internal or recollimation shocks, and mass-load.

In a non-accreting pulsar:

- Pulsar wind likely magnetized, anisotropic and ultrarelativistic.
- The pulsar wind is accelerated by B dissipation; how fast is it?
- Highly relativistic unshocked flow in a dense photon field plus e^{\pm}-creation:
- IC and 1-shot converter mechanism?

(Barkov & Khangulyan 2012-MQ-)

(Cerutti et al. 2020-PSR-)
Relativistic outflows: winds and jets

In a HMMQ:
- A jet can form, protected from the stellar wind by an accretion wind.
- Magnetization, content and velocity are unclear, possibly structured.
- The jet can already suffer internal or recollimation shocks, and mass-load.

In a non-accreting pulsar:
- Pulsar wind likely magnetized, anisotropic and ultrarelativistic.
- The pulsar wind is accelerated by B dissipation; how fast is it?
- Highly relativistic unshocked flow in a dense photon field plus e^\pm-creation:
- IC and 1-shot converter mechanism?

(Derishev&Aharonian12)

(Barkov & Khangulyan 2012-MQ-)

(Cerutti et al. 2020-PSR-)
Relativistic outflows: winds and jets

- In a HMMQ:
 - A jet can form, protected from the stellar wind by an accretion wind.
 - Magnetization, content and velocity are unclear, possibly structured.
 - The jet can already suffer internal or recollimation shocks, and mass-load.

- In a non-accreting pulsar:
 - Pulsar wind likely magnetized, anisotropic and ultrarelativistic.
 - The pulsar wind is accelerated by B dissipation; how fast is it?
 - Highly relativistic unshocked flow in a dense photon field plus e^\pm-creation:
 - IC and 1-shot converter mechanism?

(Barkov & Khangulyan 2012-MQ-)
(Cerutti et al. 2020-PSR-)
Relativistic outflows: winds and jets

- In a HMMQ:
 - A jet can form, protected from the stellar wind by an accretion wind.
 - Magnetization, content and velocity are unclear, possibly structured.
 - The jet can already suffer internal or recollimation shocks, and mass-load.

- In a non-accreting pulsar:
 - Pulsar wind likely magnetized, anisotropic and ultrarelativistic.
 - The pulsar wind is accelerated by B dissipation; how fast is it?

- Highly relativistic unshocked flow in a dense photon field plus \pm-creation:
 - IC and 1-shot converter mechanism?

(Barkov & Khangulyan 2012-MQ-)
(Cerutti et al. 2020-PSR-)
(Derishev&Aharonian12)
Relativistic outflows: winds and jets

In a HMMQ:
- A jet can form, protected from the stellar wind by an accretion wind.
- Magnetization, content and velocity are unclear, possibly structured.
- The jet can already suffer internal or recollimation shocks, and mass-load.

In a non-accreting pulsar:
- Pulsar wind likely magnetized, anisotropic and ultrarelativistic.
- The pulsar wind is accelerated by B dissipation; how fast is it?
- Highly relativistic unshocked flow in a dense photon field plus e^\pm-creation:
 - IC and 1-shot converter mechanism? (Derishev&Aharonian12)

(Barkov & Khangulyan 2012-MQ-)
(Cerutti et al. 2020-PSR-)
Radiation fields

- **Strong IC:** $u_* \sim 1 - 100 u_B(L_*,38/L_{0,36})$
- Radiation efficient even in binary periphery.
- On binary scales, $\tau_{\gamma\gamma uv} \sim 0.1 - 10$ but...
- ...there is no clear evidence of radiation reprocessing in radio, X-rays, gamma rays.
- Photo-hadronic processes if $\exists 0.1-10$ PeV p/nuclei on binary scales ($q_{BR} \lesssim$ PeV).

(Levison&Waxman01)

(Aharonian et al. 2006)

(Cerutti et al. 2010)
Radiation fields

- **Strong IC**: $u_* \sim 1 - 100 \ u_B (L_*, 38/L_{0,36})$
- Radiation efficient even in binary periphery.
- On binary scales, $\tau_{\gamma\gamma uv} \sim 0.1 - 10$ but...
- ...there is no clear evidence of radiation reprocessing in radio, X-rays, gamma rays.
- Photo-hadronic processes if $\exists 0.1-10$ PeV p/nuclei on binary scales ($q_{BR} \lesssim$ PeV).

(Levison&Waxman01)

(Aharonian et al. 2006)

(B-R & Khangulyan 2011)

(Cerutti et al. 2010)
Radiation fields

- **Strong IC**: $u_\star \sim 1 - 100 \ u_B(L_\star, 38/L_0, 36)$
- Radiation efficient even in binary periphery.
- **On binary scales**, $\tau_{\gamma\gamma_{\nu}} \sim 0.1 - 10$ but...
- ...there is no clear evidence of radiation reprocessing in radio, X-rays, gamma rays.
- Photo-hadronic processes if $\exists 0.1-10$ PeV p/nuclei on binary scales ($q_{BR} \lesssim$ PeV).

(Levison&Waxman01)

(Aharonian et al. 2006)

(B-R & Khangulyan 2011)

(Cerutti et al. 2010)
Strong IC: \(u_\ast \sim 1 - 100 \ u_B (L_{\ast,38}/L_{0,36}) \)

Radiation efficient even in binary periphery.

On binary scales, \(\tau_{\gamma\gamma uv} \sim 0.1 - 10 \) but...

...there is no clear evidence of radiation reprocessing in radio, X-rays, gamma rays.

Photo-hadronic processes if \(0.1-10 \) PeV \(p/\)nuclei on binary scales (\(qBR \lesssim \) PeV).

(Levison&Waxman01)

(Aharonian et al. 2006)

(B-R & Khangulyan 2011)

(Cerutti et al. 2010)
Radiation fields

- **Strong IC:** \(u_\star \sim 1 - 100 \ u_B (L_\star, 38 / L_0, 36) \)
- Radiation efficient even in binary periphery.
- On binary scales, \(\tau_{\gamma\gamma uv} \sim 0.1 - 10 \) but...
- ...there is no clear evidence of radiation reprocessing in radio, X-rays, gamma rays.
- **Photo-hadronic processes** if \(\exists 0.1 - 10 \) PeV \(p/\text{nuclei} \) on binary scales (\(qBR \lesssim \) PeV).

(Levison&Waxman01)

(Aharonian et al. 2006)

(Cerutti et al. 2010)
Substantial and structured stellar wind

- Massive star wind determines dynamics:
 - \(\frac{L_0}{\dot{M} c} \approx 5 \times 10^7 \left(\frac{L_{0,36}}{\dot{M}_{-7}} \right) \text{ cm s}^{-1} \),
 - \(\sqrt{2L_0 / \dot{M}} \approx 5 \times 10^8 \sqrt{\frac{L_{0,36}}{\dot{M}_{-7}}} \text{ cm s}^{-1} \).

- The winds are complex:
 - There is a fast, clumpy polar wind.
 - Be star has dense slow disk but \(\rho \propto r^{-3} \).

- The wind can affect/mix with relativistic flow.
- Dense wind+mixing might lead to efficient \(pp \).
- Sill, \(\frac{L_0}{L_{sw}} \sim 10 \left(\frac{L_{0,36}}{\dot{M}_{-7}} v_{w,8}^2 \right) \), so outflow determines the dynamics at large scales.

\((\text{Perucho & B-R 2012-cl. MQ-}) \)

\((\text{Romero+03}) \)

\((\text{Kefala & B-R 2023-cl. PSR-}) \)
Substantial and structured stellar wind

- Massive star wind determines dynamics:
 - \(\frac{L_0}{\dot{M}c} \approx 5 \times 10^7 \left(\frac{L_{0,36}}{\dot{M}_{-7}} \right) \text{ cm s}^{-1}, \)
 - \(\sqrt{2L_0/\dot{M}} \approx 5 \times 10^8 \sqrt{L_{0,36}/\dot{M}_{-7}} \text{ cm s}^{-1}. \)

- The winds are complex:
 - There is a fast, clumpy polar wind.
 - Be star has dense slow disk but \(\rho \propto r^{-3}. \)

- The wind can affect/mix with relativistic flow.
- Dense wind+mixing might lead to efficient \(pp. \)
- Sill, \(L_0/L_{\text{sw}} \sim 10 \left(\frac{L_{0,36}}{\dot{M}_{-7}} v_{w,8.3}^2 \right), \) so outflow determines the dynamics at large scales.

(Oakazaki et al. 2011-Be PSR-)
(Perucho & B-R 2012-cl. MQ-)
(Kefala & B-R 2023-cl. PSR-)

V. Bosch-Ramon (UB) On the physics of gamma-ray binaries October 23, 2023 10/19
Substantial and structured stellar wind

- **Massive star wind determines dynamics:**
 - $L_0/\dot{M}c \approx 5 \times 10^7 \left(\frac{L_{0,36}}{\dot{M}_{-7}} \right) \text{ cm s}^{-1}$,
 - $\sqrt{2L_0/\dot{M}} \approx 5 \times 10^8 \sqrt{\frac{L_{0,36}}{\dot{M}_{-7}}} \text{ cm s}^{-1}$.

- The winds are complex:
 - There is a fast, clumpy polar wind.
 - Be star has dense slow disk but $\rho \propto r^{-3}$.
 - The wind can affect/mix with relativistic flow.
 - Dense wind+mixing might lead to efficient pp.
 - Sill, $L_0/L_{sw} \sim 10 \left(\frac{L_{0,36}}{\dot{M}_{-7}} v_{w,8.3}^2 \right)$, so outflow determines the dynamics at large scales.

(Oakazaki et al. 2011-Be PSR-)

(Perucho & B-R 2012-cl. MQ-)

(Kefala & B-R 2023-cl. PSR-)

Distorted CD
Substantial and structured stellar wind

- **Massive star wind determines dynamics:**
 - \(L_o/\dot{M}c \approx 5 \times 10^7 (L_{o,36}/\dot{M}_{-7}) \text{ cm s}^{-1}, \)
 - \(\sqrt{2L_o/\dot{M}} \approx 5 \times 10^8 \sqrt{L_{o,36}/\dot{M}_{-7}} \text{ cm s}^{-1}. \)

- **The winds are complex:**
 - There is a fast, clumpy polar wind.
 - Be star has dense slow disk but \(\rho \propto r^{-3}. \)
 - The wind can affect/mix with relativistic flow.
 - Dense wind+mixing might lead to efficient pp.
 - Sill, \(L_o/L_{sw} \sim 10 (L_{o,36}/\dot{M}_{-7} v_w^2,8.3), \) so outflow determines the dynamics at large scales.

(Romero+03)

(Oakazaki et al. 2011-Be PSR-)

(Perucho & B-R 2012-cl. MQ-)

(Kefala & B-R 2023-cl. PSR-)

Distorted CD

Clumpy stellar wind
Substantial and structured stellar wind

- Massive star wind determines dynamics:
 - \(L_0/\dot{M}c \approx 5 \times 10^7 \left(L_{o,36}/\dot{M}_{-7} \right) \text{ cm s}^{-1} \),
 - \(\sqrt{2L_0/\dot{M}} \approx 5 \times 10^8 \sqrt{L_{o,36}/\dot{M}_{-7}} \text{ cm s}^{-1} \).

- The winds are complex:
 - There is a fast, clumpy polar wind.
 - Be star has dense slow disk but \(\rho \propto r^{-3} \).
 - The wind can affect/mix with relativistic flow.
 - Dense wind+mixing might lead to efficient \(pp \).
 - Sill, \(L_0/L_{sw} \sim 10 \left(L_{o,36}/\dot{M}_{-7} v_{w,8.3}^2 \right) \), so outflow determines the dynamics at large scales.

(Oakazaki et al. 2011-Be PSR-)

(Perucho & B-R 2012-cl. MQ-)

(Kefala & B-R 2023-cl. PSR-)

V. Bosch-Ramon (UB)
On the physics of gamma-ray binaries
October 23, 2023
Substantial and structured stellar wind

- Massive star wind determines dynamics:
 \[
 \frac{L_0}{\dot{M} c} \approx 5 \times 10^7 \left(\frac{L_{0,36}}{\dot{M}_{-7}} \right) \text{cm s}^{-1},
 \]
 \[
 \sqrt{2L_0/\dot{M}} \approx 5 \times 10^8 \sqrt{L_{0,36}/\dot{M}_{-7}} \text{cm s}^{-1}.
 \]

- The winds are complex:
 - There is a fast, clumpy polar wind.
 - Be star has dense slow disk but \(\rho \propto r^{-3} \).
 - The wind can affect/mix with relativistic flow.
 - Dense wind+mixing might lead to efficient \(pp \).
 - Sill, \(L_0/L_{sw} \sim 10 \left(L_{0,36}/\dot{M}_{-7} v_{w,8.3}^2 \right) \), so outflow determines the dynamics at large scales.

(Oakazaki et al. 2011-Be PSR-)

(Perucho & B-R 2012-cl. MQ-)

(Kefala & B-R 2023-cl. PSR-)

Distorted CD

Clumpy stellar wind
Substantial and structured stellar wind

- Massive star wind determines dynamics:
 - \(\frac{L_0}{\dot{M}c} \approx 5 \times 10^7 \left(\frac{L_{0,36}}{\dot{M}_{-7}} \right) \text{ cm s}^{-1} \),
 - \(\sqrt{2L_0/\dot{M}} \approx 5 \times 10^8 \sqrt{L_{0,36}/\dot{M}_{-7}} \text{ cm s}^{-1} \).

- The winds are complex:
 - There is a fast, clumpy polar wind.
 - Be star has dense slow disk but \(\rho \propto r^{-3} \).

- The wind can affect/mix with relativistic flow.
 - Dense wind+mixing might lead to efficient pp.
 - Sill, \(\frac{L_0}{L_{sw}} \sim 10 \left(\frac{L_{0,36}}{\dot{M}_{-7}} v_{w,8.3}^2 \right) \), so outflow determines the dynamics at large scales.

(Oakazaki et al. 2011-Be PSR-)
(Perucho & B-R 2012-cl. MQ-)
(Kefala & B-R 2023-cl. PSR-)

Distorted CD
Clumpy stellar wind
Star
Substantial and structured stellar wind

- Massive star wind determines dynamics:
 \[\frac{L_0}{\dot{M}c} \approx 5 \times 10^7 \left(\frac{L_{0,36}}{\dot{M}_{-7}} \right) \text{ cm s}^{-1}, \]
 \[\sqrt{2L_0/\dot{M}} \approx 5 \times 10^8 \sqrt{L_{0,36}/\dot{M}_{-7}} \text{ cm s}^{-1}. \]

- The winds are complex:
 - There is a fast, clumpy polar wind.
 - Be star has dense slow disk but \(\rho \propto r^{-3} \).

- The wind can affect/mix with relativistic flow.

- Dense wind+mixing might lead to efficient pp.
 \((\text{Romero+03}) \)

- Sill, \(\frac{L_0}{L_{sw}} \sim 10 \left(\frac{L_{0,36}}{\dot{M}_{-7}} v_{w,8.3}^2 \right) \), so outflow determines the dynamics at large scales.
 \((\text{Perucho & B-R 2012-cl. MQ-}) \)

(Oakazaki et al. 2011-Be PSR-)

(Kefala & B-R 2023-cl. PSR-)
Substantial and structured stellar wind

- Massive star wind determines dynamics:
 - \(\frac{L_o}{\dot{M}c} \approx 5 \times 10^7 \left(\frac{L_{o,36}}{\dot{M}_{-7}} \right) \text{ cm s}^{-1} \),
 - \(\sqrt{2L_o/\dot{M}} \approx 5 \times 10^8 \sqrt{\frac{L_{o,36}}{\dot{M}_{-7}}} \text{ cm s}^{-1} \).

- The winds are complex:
 - There is a fast, clumpy polar wind.
 - Be star has dense slow disk but \(\rho \propto r^{-3} \).

- The wind can affect/mix with relativistic flow.

- Dense wind+mixing might lead to efficient pp. (Romero+03)

- Sill, \(\frac{L_o}{L_{sw}} \sim 10 \left(\frac{L_{o,36}}{\dot{M}_{-7}} v_{w,8.3}^2 \right) \), so outflow determines the dynamics at large scales. (Romero+03)

(Oakazaki et al. 2011-Be PSR-)

(Perucho & B-R 2012-cl. MQ-)

(Kefala & B-R 2023-cl. PSR-)

V. Bosch-Ramon (UB) On the physics of gamma-ray binaries October 23, 2023 10/19
Relativistic effects and energetics

- Reduction/enhancement of target fields:
 \[\epsilon'_0 = \delta_\star \epsilon_0, \quad u' \propto \delta_\star^2 u, \quad \delta_\star = \Gamma (1 - \beta \mu), \quad B' \approx B/\Gamma. \]

- Reduction/enhancement of observed emission:
 \[L_{\text{obs}} = \delta_{\text{obs}}^3 L'/\Gamma. \]

- Observed emission shaped by anisotropy of particles and targets in flow frame, and L.O.S.

- Except for blazar-like jets, orbital modulation yields a (large) minimum NT power.

- Relativistic effects are likely confined to the binary scales due to stellar wind influence.

(Khangulyan+14-PSR flare-)

(Bogovalov et al. 2008-wind reacc. PSR-)

(Romero et al. 2002-μblazar-)
Relativistic effects and energetics

- **Reduction/enhancement of target fields**:
 \[\epsilon' = \delta_0 \epsilon_0, \quad u' \propto \delta u, \quad \delta = \Gamma(1 - \beta \mu), \quad B' \approx B/\Gamma. \]

- **Reduction/enhancement of observed emission**:
 \[L_{\text{obs}} = \delta^3 L' / \Gamma. \]

- Observed emission shaped by anisotropy of particles and targets in flow frame, and L.O.S.
- Except for blazar-like jets, orbital modulation yields a (large) minimum NT power.
- Relativistic effects are likely confined to the binary scales due to stellar wind influence.

(Khangulyan+14-PSR flare-)

(Bogovalov et al. 2008-wind reacc. PSR-)

(Romero et al. 2002-\(\mu\)blazar-)

V. Bosch-Ramon (UB)
On the physics of gamma-ray binaries
October 23, 2023
Relativistic effects and energetics

- **Reduction/enhancement of target fields:**
 \[\epsilon'_0 = \delta_* \epsilon_0, \; u' \propto \delta_*^2 u, \; \delta_* = \Gamma(1 - \beta \mu), \; B' \approx B/\Gamma. \]

- **Reduction/enhancement of observed emission:**
 \[L_{\text{obs}} = \delta_{\text{obs}}^3 L'/\Gamma. \]

- **Observed emission shaped by anisotropy of particles and targets in flow frame, and L.O.S.**

- **Except for blazar-like jets, orbital modulation yields a (large) minimum NT power.**

- **Relativistic effects are likely confined to the binary scales due to stellar wind influence.**

(Khangulyan+14-PSR flare-)

(Bogovalov et al. 2008-wind reacc. PSR-)

(Romero et al. 2002-\(\mu\)-blazar-)
Relativistic effects and energetics

- Reduction/enhancement of target fields:
 \[\epsilon'_0 = \delta_\star \epsilon_0, \quad u' \propto \delta_\star^2 u, \quad \delta_\star = \Gamma(1 - \beta \mu), \quad B' \approx B/\Gamma. \]

- Reduction/enhancement of observed emission:
 \[L_{\text{obs}} = \delta_{\text{obs}}^3 L'/\Gamma. \]

- Observed emission shaped by anisotropy of particles and targets in flow frame, and L.O.S.

- Except for blazar-like jets, orbital modulation yields a (large) minimum NT power.

- Relativistic effects are likely confined to the binary scales due to stellar wind influence.

(Bogovalov et al. 2008-wind reacc. PSR-)

(Romero et al. 2002- \mu blazar-)

(Khangulyan+14-PSR flare-)
Relativistic effects and energetics

- **Reduction/enhancement of target fields:**
 \[\epsilon'_0 = \delta_* \epsilon_0, \quad u' \propto \delta_*^2 u, \quad \delta_* = \Gamma (1 - \beta \mu), \quad B' \approx B/\Gamma. \]

- **Reduction/enhancement of observed emission:**
 \[L_{\text{obs}} = \delta_{\text{obs}}^3 L'/\Gamma. \]

- Observed emission shaped by anisotropy of particles and targets in flow frame, and L.O.S.

- Except for blazar-like jets, orbital modulation yields a (large) minimum NT power.

- **Relativistic effects are likely confined to the binary scales due to stellar wind influence.**

(Bogovalov et al. 2008-wind reacc. PSR-)

(Romero et al. 2002-\(\mu\)blazar-)

(Khangulyan+14-PSR flare-)
Shocks, instabilities and mixing

- Jet/wind shocked from star side.
- Shocked flow soon gets unstable.
- In pure HD, R.-M., R.-T., and K.-H. instabilities are important.
- Instabilities+mixing on all scales.
- What is the role of B?

(Lamberts et al. 2013-PSR→)

(Barkov & B-R 2022-MQ↓)

(B-R et al. 2015-PSR-)

(Perucho&B-R+12-MQ-)
Shocks, instabilities and mixing

- **Jet/wind shocked from star side.**
- **Shocked flow soon gets unstable.**
- In pure HD, R.-M., R.-T., and K.-H. instabilities are important.
- Instabilities+mixing on all scales.
- What is the role of B?

(B-R et al. 2015-PSR-)
(Lamberts et al. 2013-PSR-⋯)

(Barkov & B-R 2022-MQ-↓)

(Perucho&B-R+12-MQ-)

(Kissmann+2023-PSR-)
Shocks, instabilities and mixing

- Jet/wind shocked from star side.
- Shocked flow soon gets unstable.
- In pure HD, R.-M., R.-T., and K.-H. instabilities are important.
- Instabilities+mixing on all scales.
- What is the role of B?

(Lamberts et al. 2013-PSR→)

(Barkov & B-R 2022-MQ↓)

(B-R et al. 2015-PSR-)

(Kissmann+2023-PSR-)
Shocks, instabilities and mixing

- Jet/wind shocked from star side.
- Shocked flow soon gets unstable.
- In pure HD, R.-M., R.-T., and K.-H. instabilities are important.
- Instabilities+mixing on all scales.
- What is the role of B?

References:
- (Lamberts et al. 2013-PSR-→)
- (Barkov & B-R 2022-MQ-↓)
- (Perucho&B-R+12-MQ-)
Shocks, instabilities and mixing

- Jet/wind shocked from star side.
- Shocked flow soon gets unstable.
- In pure HD, R.-M., R.-T., and K.-H. instabilities are important.
- Instabilities+mixing on all scales.
- What is the role of B?

(Lamberts et al. 2013-PSR→)
(Barkov & B-R 2022-MQ↓)
(Perucho&B-R+12-MQ-)
Magnetic fields

- **In winds, as $\sigma \sim 1$, postshock physics is affected:**
 - The anisotropic P_B modifies size and geometry.
 - Flow direction and velocity are strongly modified.
 - Reconnection can occur in shocked flow current sheets.
- **In winds and jets, B can both enhance or suppress instability.**

(Bogovalov et al. 2019-PSR-)
(Barkov et al. 2022-PSR-)
(López-Miralles et al. 2022-MQ-)
Magnetic fields

- In winds, as $\sigma \sim 1$, postshock physics is affected:
 - The anisotropic P_B modifies size and geometry.
 - Flow direction and velocity are strongly modified.
 - Reconnection can occur in shocked flow current sheets.
- In winds and jets, B can both enhance or suppress instability.

(Bogovalov et al. 2019-PSR-)
(Barkov et al. 2022-PSR-)
(López-Miralles et al. 2022-MQ-)

V. Bosch-Ramon (UB) On the physics of gamma-ray binaries October 23, 2023 13/19
Magnetic fields

- In winds, as $\sigma \sim 1$, postshock physics is affected:
 - The anisotropic P_B modifies size and geometry.
 - Flow direction and velocity are strongly modified.
 - Reconnection can occur in shocked flow current sheets.
- In winds and jets, B can both enhance or suppress instability.

(Bogovalov et al. 2019-PSR-)
(Barkov et al. 2022-PSR-)
(López-Miralles et al. 2022-MQ-)
Magnetic fields

- In winds, as $\sigma \sim 1$, postshock physics is affected:
 - The anisotropic P_B modifies size and geometry.
 - Flow direction and velocity are strongly modified.
 - Reconnection can occur in shocked flow current sheets.

- In winds and jets, B can both enhance or suppress instability.

(Bogovalov et al. 2019-PSR-)
(Barkov et al. 2022-PSR-)
(López-Miralles et al. 2022-MQ-)
Magnetic fields

- In winds, as $\sigma \sim 1$, postshock physics is affected:
 - The anisotropic P_B modifies size and geometry.
 - Flow direction and velocity are strongly modified.
 - Reconnection can occur in shocked flow current sheets.
- In winds and jets, B can both enhance or suppress instability.

(Bogovalov et al. 2019-PSR-)
(Barkov et al. 2022-PSR-)
(López-Miralles et al. 2022-MQ-)
Outline

1. Introduction
2. Binary scales
3. Beyond binary scales
4. Discussion
Orbital motion and eccentricity

- **Orbit** causes a strong Coriolis shock in the pulsar wind and more instability.
- A spiral structure forms (orbital plane; expanding perpendicularly).
- For high e a mixed fast outflow is produced in the apastron direction.
- HMMQ jets also affected by orbit.

(Barkov & B-R 2021; see observations: e.g. Pavlov+2015)

(Barkov & B-R 2022-MQ↑) (Huber et al. 2021-PSR↓)
Orbital motion and eccentricity

- Orbit causes a strong Coriolis shock in the pulsar wind and more instability.
- A spiral structure forms (orbital plane; expanding perpendicularly).
- For high e a mixed fast outflow is produced in the apastron direction.
- HMMQ jets also affected by orbit.

(Barkov & B-R 2021; see observations: e.g. Pavlov+2015)

(Huber et al. 2021-PSR-↓)
Orbital motion and eccentricity

- Orbit causes a strong Coriolis shock in the pulsar wind and more instability.
- A spiral structure forms (orbital plane; expanding perpendicularly).
- For high e a mixed fast outflow is produced in the apastron direction.
- HMMQ jets also affected by orbit.

(Barkov & B-R 2021; see observations: e.g. Pavlov+2015)
Orbital motion and eccentricity

- Orbit causes a strong Coriolis shock in the pulsar wind and more instability.
- A spiral structure forms (orbital plane; expanding perpendicularly).
- For high e a mixed fast outflow is produced in the apastron direction.
- HMMQ jets also affected by orbit.

(Barkov & B-R 2022-MQ↑) (Huber et al. 2021-PSR↓)

(Barkov & B-R 2021; see observations: e.g. Pavlov+2015)
Large scale interactions

- Mass-loaded, reaccelerated fast outflow interacts with medium.
- Evidence of large scale radio, X-ray and gamma rays: local acceleration;
 (e.g. Mirabel+92; Safi-Harb+99; Paredes+07; HAWC; HESS)
- Adiabatic losses in expanding outflow prevent binary CR to reach the ISM.
- What is the role of proper motion? Bent jets? sPWN-like?

(B-R & Barkov 2011)

(Bordas et al. 2009)

(Yoon et al. 2011)
Large scale interactions

- Mass-loaded, reaccelerated fast outflow interacts with medium.
- Evidence of large scale radio, X-ray and gamma rays: local acceleration;
 (e.g. Mirabel+92; Safi-Harb+99; Paredes+07; HAWC; HESS)
- Adiabatic losses in expanding outflow prevent binary CR to reach the ISM.
- What is the role of proper motion? Bent jets? sPWN-like?

(Yoon et al. 2011)

(B-R & Barkov 2011)

(Bordas et al. 2009)
Large scale interactions

- Mass-loaded, reaccelerated fast outflow interacts with medium.
- Evidence of large scale radio, X-ray and gamma rays: local acceleration;
 (e.g. Mirabel+92; Safi-Harb+99; Paredes+07; HAWC; HESS)
- Adiabatic losses in expanding outflow prevent binary CR to reach the ISM.
- What is the role of proper motion? Bent jets? sPWN-like?

(Yoon et al. 2011)

(B-R & Barkov 2011)

(Bordas et al. 2009)
Large scale interactions

- Mass-loaded, reaccelerated fast outflow interacts with medium.
- Evidence of large scale radio, X-ray and gamma rays: local acceleration;
 (e.g. Mirabel+92; Safi-Harb+99; Paredes+07; HAWC; HESS)
- Adiabatic losses in expanding outflow prevent binary CR to reach the ISM.
- What is the role of proper motion? Bent jets? sPWN-like?

(Yoon et al. 2011)

(B-R & Barkov 2011)

(Bordas et al. 2009)
Outline

1. Introduction
2. Binary scales
3. Beyond binary scales
4. Discussion
Most relevant aspects?

- The stellar wind and orbital motion shape the HMGB relativistic outflows via shocks, turbulence, mixing...
- This leads to different regions likely to host non-thermal activity:
 - Efficient acceleration of e^\pm and p/nuclei in the strongly dissipative outflow.
 - Dense radiation fields; fast synchrotron, IC and escape.
- On large scales:
 - Extended radio, X-rays and gamma rays are detected.
 - Adiabatic cooling implies efficient acceleration.
- Relativistic HMGB are young powerful (moving) systems that can significantly affect the ISM due to their large luminosity.
- Small galactic population (10s of sources?) with a non-trivial role in the high-energy sky (UHE γ-rays, PeV CR and... perhaps even ν?).
Most relevant aspects?

- The stellar wind and orbital motion shape the HMGB relativistic outflows via shocks, turbulence, mixing...
- This leads to different regions likely to host non-thermal activity:
 - Efficient acceleration of e^\pm and p/nuclei in the strongly dissipative outflow.
 - Dense radiation fields; fast synchrotron, IC and escape.
- On large scales:
 - Extended radio, X-rays and gamma rays are detected.
 - Adiabatic cooling implies efficient acceleration.

Relativistic HMGB are young powerful (moving) systems that can significantly affect the ISM due to their large luminosity.

Small galactic population (10s of sources?) with a non-trivial role in the high-energy sky (UHE γ-rays, PeV CR and... perhaps even ν?).
Most relevant aspects?

- The stellar wind and orbital motion shape the HMGB relativistic outflows via shocks, turbulence, mixing...
- This leads to different regions likely to host non-thermal activity:
 - Efficient acceleration of e^\pm and p/nuclei in the strongly dissipative outflow.
 - Dense radiation fields; fast synchrotron, IC and escape.
- On large scales:
 - Extended radio, X-rays and gamma rays are detected.
 - Adiabatic cooling implies efficient acceleration.
- Relativistic HMGB are young powerful (moving) systems that can significantly affect the ISM due to their large luminosity.
- Small galactic population (10s of sources?) with a non-trivial role in the high-energy sky (UHE γ-rays, PeV CR and... perhaps even ν?).
Most relevant aspects?

- The stellar wind and orbital motion shape the HMGB relativistic outflows via shocks, turbulence, mixing...
- This leads to different regions likely to host non-thermal activity:
 - Efficient acceleration of e^\pm and p/nuclei in the strongly dissipative outflow.
 - Dense radiation fields; fast synchrotron, IC and escape.
- On large scales:
 - Extended radio, X-rays and gamma rays are detected.
 - Adiabatic cooling implies efficient acceleration.
- Relativistic HMGB are young powerful (moving) systems that can significantly affect the ISM due to their large luminosity.
- Small galactic population (10s of sources?) with a non-trivial role in the high-energy sky (UHE γ-rays, PeV CR and... perhaps even ν?).
Most relevant aspects?

- The stellar wind and orbital motion shape the HMGB relativistic outflows via shocks, turbulence, mixing...
- This leads to different regions likely to host non-thermal activity:
 - Efficient acceleration of e^\pm and p/nuclei in the strongly dissipative outflow.
 - Dense radiation fields; fast synchrotron, IC and escape.
- On large scales:
 - Extended radio, X-rays and gamma rays are detected.
 - Adiabatic cooling implies efficient acceleration.
- Relativistic HMGB are young powerful (moving) systems that can significantly affect the ISM due to their large luminosity.
- Small galactic population (10s of sources?) with a non-trivial role in the high-energy sky (UHE γ-rays, PeV CR and... perhaps even ν?).
Most relevant aspects?

- The stellar wind and orbital motion shape the HMGB relativistic outflows via shocks, turbulence, mixing...
- This leads to different regions likely to host non-thermal activity:
 - Efficient acceleration of e^{\pm} and p/nuclei in the strongly dissipative outflow.
 - Dense radiation fields; fast synchrotron, IC and escape.
- On large scales:
 - Extended radio, X-rays and gamma rays are detected.
 - Adiabatic cooling implies efficient acceleration.
- Relativistic HMGB are young powerful (moving) systems that can significantly affect the ISM due to their large luminosity.
- Small galactic population (10s of sources?) with a non-trivial role in the high-energy sky (UHE γ-rays, PeV CR and... perhaps even ν?).
Most relevant aspects?

- The stellar wind and orbital motion shape the HMGB relativistic outflows via shocks, turbulence, mixing...
- This leads to different regions likely to host non-thermal activity:
 - Efficient acceleration of e^\pm and p/nuclei in the strongly dissipative outflow.
 - Dense radiation fields; fast synchrotron, IC and escape.
- On large scales:
 - Extended radio, X-rays and gamma rays are detected.
 - Adiabatic cooling implies efficient acceleration.
- Relativistic HMGB are young powerful (moving) systems that can significantly affect the ISM due to their large luminosity.
- Small galactic population (10s of sources?) with a non-trivial role in the high-energy sky (UHE γ-rays, PeV CR and... perhaps even ν?).
Most relevant aspects?

- The stellar wind and orbital motion shape the HMGB relativistic outflows via shocks, turbulence, mixing...
- This leads to different regions likely to host non-thermal activity:
 - Efficient acceleration of e^\pm and p/nuclei in the strongly dissipative outflow.
 - Dense radiation fields; fast synchrotron, IC and escape.
- On large scales:
 - Extended radio, X-rays and gamma rays are detected.
 - Adiabatic cooling implies efficient acceleration.
- Relativistic HMGB are young powerful (moving) systems that can significantly affect the ISM due to their large luminosity.
- Small galactic population (10s of sources?) with a non-trivial role in the high-energy sky (UHE γ-rays, PeV CR and... perhaps even ν?).
Most relevant aspects?

- The stellar wind and orbital motion shape the HMGB relativistic outflows via shocks, turbulence, mixing...
- This leads to different regions likely to host non-thermal activity:
 - Efficient acceleration of e^\pm and p/nuclei in the strongly dissipative outflow.
 - Dense radiation fields; fast synchrotron, IC and escape.
- On large scales:
 - Extended radio, X-rays and gamma rays are detected.
 - Adiabatic cooling implies efficient acceleration.
- Relativistic HMGB are young powerful (moving) systems that can significantly affect the ISM due to their large luminosity.
- Small galactic population (10s of sources?) with a non-trivial role in the high-energy sky (UHE γ-rays, PeV CR and... perhaps even ν?).
Thank you.
BACKUP SLIDES
LS 5039 at high energies

- O6.5V(f) + a possible neutron star at $\approx 2 \text{ kpc}$
- $P \approx 3.9\ \text{days}$ and $e \approx 0.35$
- Reaching $\approx 2 \times 10^{35}\ \text{(GeV)}$ and $5 \times 10^{33}\ \text{erg s}^{-1}\ \text{(TeV)}$.
- MeV detection (consistent variability and SED) reaching $\approx 5 \times 10^{35}\ \text{erg s}^{-1}$.

(Casares et al. 2005a; Aharonian et al. 2006; Takahashi et al. 2009; Chang et al. 2016; Yoneda et al. 2021)
Moderately eccentric, compact, O+CO? binary

Detected by HAWC up to ~ 100 TeV.

(HESS: Bordas et al. 2015; Goodman, Gamma2022)
1FGL J1018.6−5856 at high energies

- O6V(f) + a possible neutron star at ≈ 6.4 kpc
- $P \approx 16.6$ days and $e \approx 0.53$
- Reaching $\approx 10^{36}$ (HE) and 5×10^{33} erg s$^{-1}$ (VHE)
- Possibly detected in MeV

(Ackermann et al. 2012; HESS 2015; Collmar, VGGRS 2017; van Soelen et al. 2022)
1FGL J1018.6−5856 > 10 TeV

Moderately eccentric?, relatively compact, O+CO? binary (10s)

Fig. 1. SED of HESS J1018−589 A/1FGL J1018.6−5856 is shown in black (filled squares and circles for the LAT and HESS detection). For comparison, the SEDs of LS 5039 during superior (SUPC) and inferior conjunction (INFC) are also included (blue points from Hadasch et al. 2012; Aharonian et al. 2005a).
LCM P3 at high energies

- O5III(f) + a possible neutron star at ≈ 50 kpc
- $P \approx 10.3$ days and $e \approx 0.4$
- Reaching $\approx 4 \times 10^{36}$ (HE) and 5×10^{35} erg s$^{-1}$ (VHE)

(Corbet et al. 2016; HESS 2018; van Soelen et al. 2019)
Moderately eccentric, compact, O+CO? binary

Fig. 3. Spectral energy distribution averaged over the full orbit (green, squares) and for the on-peak orbital phase range (orbital phase from 0.2 to 0.4: blue, circles). The data points have 1σ statistical error bars, upper limits are for a 95% confidence level. The best fit and its uncertainty are represented by the solid lines and shaded areas, respectively.
LS I +61 303 at high energies

- B0V(e) + a neutron star at \(\approx 2 \text{ kpc} \)
- \(P \approx 26.5 \text{ days} \) and \(e \approx 0.6 - 0.7 \)
- Reaching \(\approx 2 \times 10^{35} \text{ (HE)} \) and \(5 \times 10^{33} \text{ erg s}^{-1} \text{ (VHE)} \)
- Similar MeV SED to LS 5039

(Casares+2005b; Albert+2006; Zhang+2010; Hadasch+2012; Collmar, VGGRS 2017; Weng+22)

Messy behavior due to superorbital modulation.
Eccentric, relatively compact, Be+ pulsar binary

Figure 3: Spectral energy distribution (SED) for LS I +61°303 for two parts of the orbit (parts of the orbit shown on top panels). SED on the left is for apastron passage covering $\phi = 0.5 \rightarrow 0.8$ and SED on the right is for the rest of the orbit for $\phi = 0.8 \rightarrow 0.5$. The orbital parameters shown on top panel are used from [14]

(VERITAS: Kar et al. 2017)
HESS J0632+057 at high energies

- B0V(pe) + a possible neutron star at \(\approx 2 \text{ kpc} \)
- \(P \approx 317 \text{ days} \) and \(e \approx 0.6 - 0.8 \)
- Reaching \(\approx 10^{34} \) (HE) and \(3 \times 10^{32} \text{ erg s}^{-1} \) (VHE)

(Casares et al. 2012; Li et al. 2017; Moritani et al. 2018; Adams et al. 2021)