Multi-wavelength lightcurves of the shallow decay phase in GRB afterglows

Katsuaki Asano (Institute for Cosmic Ray Research, Univ. Tokyo)

Inverse Compton in Afterglow (Ultra-relativistic Shock)

GRB 190114C

Acceleration Efficiency

Model	E_0 [erg]	Γ_0	n_0 [cm ⁻³]	A	p	$\epsilon_{\rm e}$	ϵ_B	$f_{ m e}$
ISM (method I)	10^{54}	600	1.0		2.3	0.06	9.0×10^{-4}	0.3
Wind (method I)	10^{54}	300		0.1	2.35	0.08	1.2×10^{-3}	0.3
ISM (method II)	4×10^{53}		0.3		2.3	0.1	1.0×10^{-3}	1.0

Fermi-LAT photon index: ~-2

Thermal Electron Fraction

GeV Reverse Shock Emission

GRB 180720B

Optical Polarization

Shallow Decay Phase

X-ray LCs

1D time-dependent calculation

Electron energy distribution

Phenomenological Model

$$\epsilon_{\rm e} \propto R^2$$
 for $R < 3.2 \times 10^{17}$ cm
 $10^{-4} \rightarrow 10^{-1}$

Magnetic Energy Density [erg cm⁻³] Electron Energy Density [erg cm⁻³] 100 0.1 $\epsilon_{\rm B} = {\rm const.}$ $\epsilon_{\rm e} = {\rm const.}$ 1 0.01 0.01 0.001 $\epsilon_{\rm e} \propto R^2$ 0.0001 $\epsilon_{\rm B} \propto R^4$ 0.0001 1e-05 $1e-06 - 10^{15}$ $1e-06 _ 10^{15}$ 10¹⁸ 10¹⁶ 10¹⁷ 10^{19} 10¹⁶ 10^{17} 10^{18} 10¹⁹ R [cm] R [cm]

 $\epsilon_B \propto R^4$ for $R < 3.2 \times 10^{17}$ cm

 $10^{-6} \rightarrow 10^{-3}$

Low - **F** + Wind

See Dereli-B é gu é +22

10¹⁷

 10^{18}

R [cm]

 10^{19}

 10^{20}

A*=0.3

 $\begin{array}{c} 0.1 \\ 10^{15} \end{array}$

 10^{16}

Lightcurves

Theoretical Approximation

One-to-One Correspondence $t_{\rm obs} \simeq (1 + z)R/(4c\Gamma^2)$

Once Γ and *R* are given,

$$\gamma'_{\rm m} \simeq \frac{\epsilon_{\rm e}}{\eta} \frac{p-2}{p-1} \Gamma \frac{m_{\rm p}}{m_{\rm e}}$$

$$B' \simeq \Gamma \sqrt{32\pi\epsilon_B n_{\rm ISM} m_{\rm p} c^2},$$

$$\gamma'_{\rm c} \simeq \frac{6\pi (1+z)m_{\rm e} c}{\sigma_{\rm T} B'^2 \Gamma t_{\rm obs}}$$

$$F_{\rm max} \simeq (1+z) \frac{N_{\rm e}}{4\pi D_{\rm L}^2} \frac{\sqrt{3} e^3 B'}{16\hbar m_{\rm e} c^2} \Gamma$$

All parameters we need

For a snap shot,

we do not need information for evolution of shocks.

Numerical Estimate: Electron Energy Distribution

Common parameters for $\Gamma, \epsilon_e, \epsilon_B$

Numerical Estimate: Electron Energy Distribution

Common parameters for $\Gamma, \epsilon_e, \epsilon_B$

Lightcurves

TeV Lightcurves

TeV Lightcurves

- Several models are possible for shallow decay phase.
- Gamma-ray detection constrains model of shallow decay.
- Parameter evolution affects the spectrum.
- Initial Low-B leads to hard electron distribution.