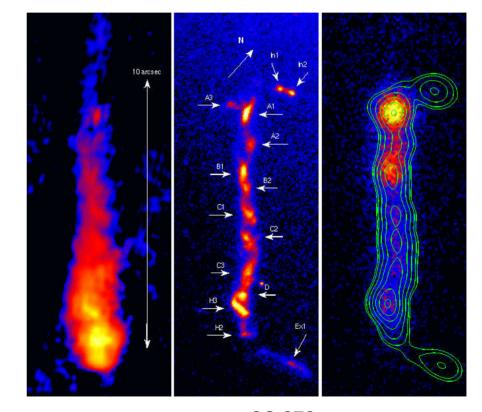
HEPRO VIII: High Energy Phenomena in Relativistic Outflows

23-26 Oct 2023 Paris (France)

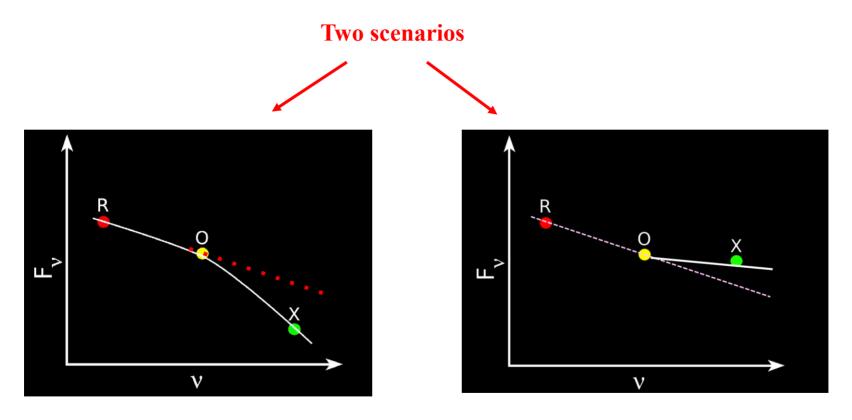
Amal Abdulrahman 1

Guide: Prof. P. A Subha 1

Collaborator: Dr. Sunder Sahayanathan ²

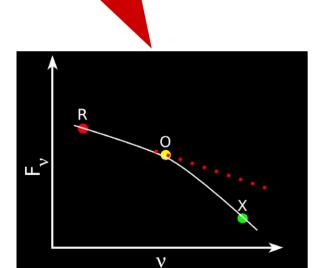

¹Farook College (Autonomous), Calicut, Kerala, India.

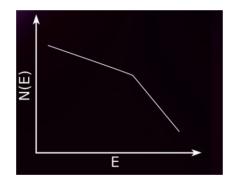
²Bhabha Atomic Research Centre, Mumbai, India.

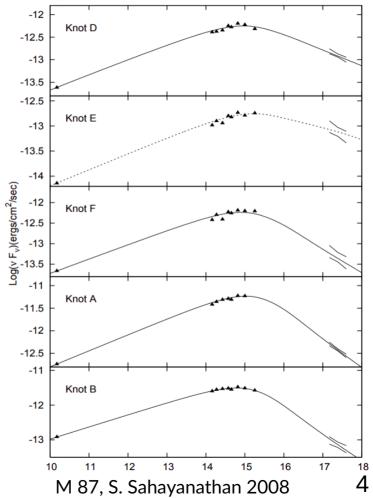

Understanding the high energy emission and multi-wavelength morphology of the knots in kilo-parsec scale jets of Active Galactic Nuclei

- The large scale AGN jets (kpc/Mpc)
- X-ray emissions from jets/knots
- Their multiwavelength emission & morphology

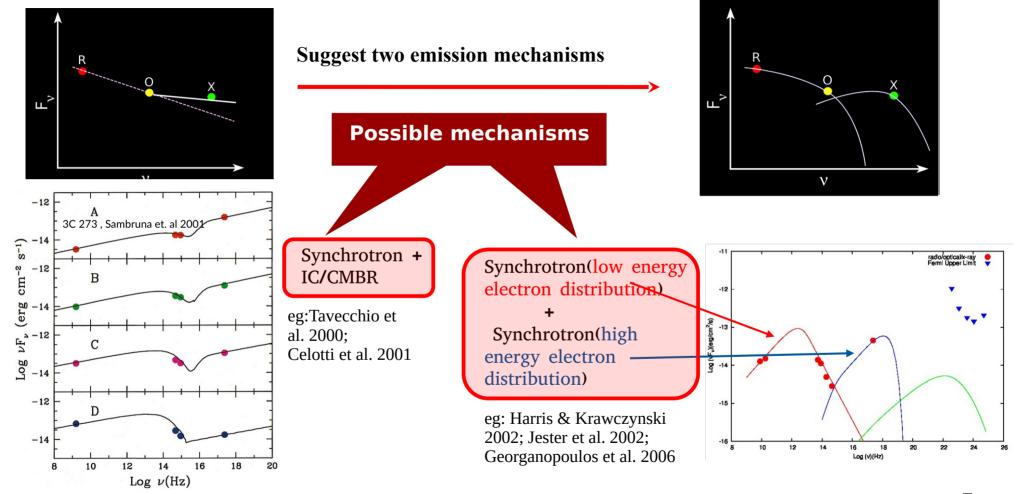
High energy emissions from kpc knots/jets?

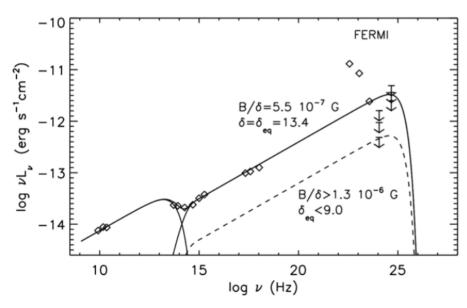


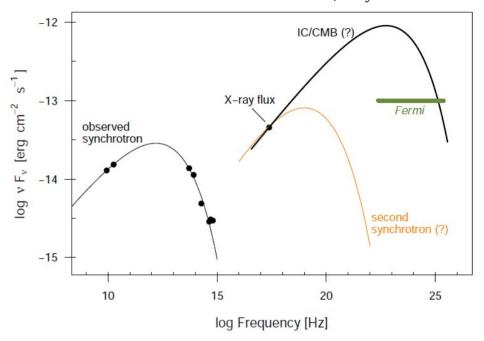



High energy emissions from k-pc knots/jets?

Synchrotron emission from a broken power-law distribution particles

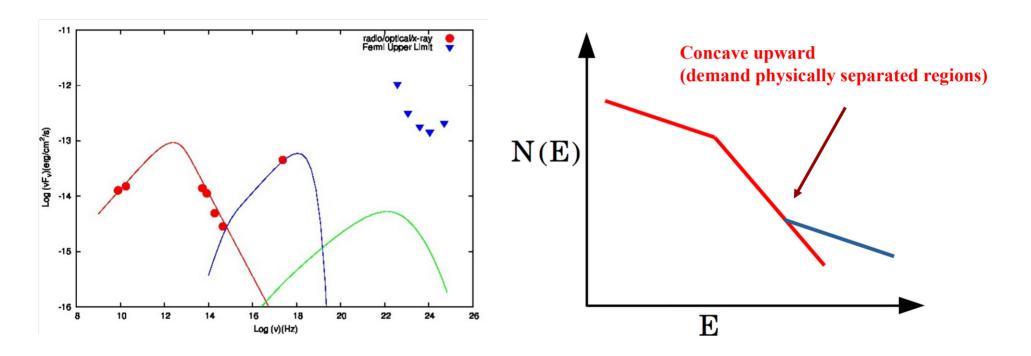



High energy emissions from kpc knots/jets?

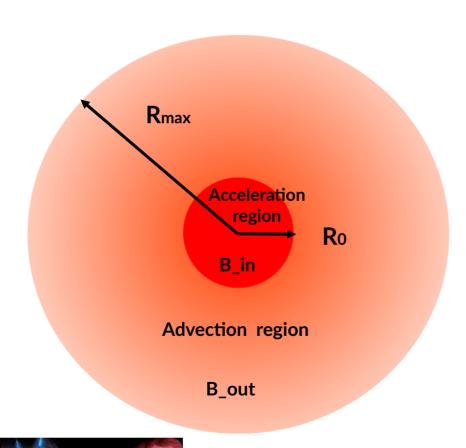


Case 1 : Synchrotron + IC/CMBR

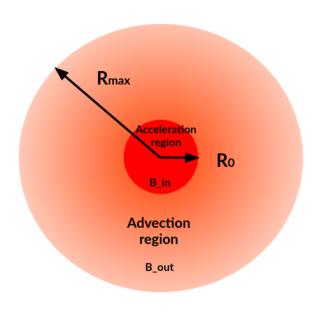
X-ray Knots : IC/CMBR Failure!!!



3C 273, Meyer & Georganopoulos 2014


3C 273, PKS 0637-752, PKS 1136-135, PKS 1229-021, PKS 1354+195 and PKS 2209+080 and many more.. (Meyer et. al 2015, Meyer & Georganopoulos 2014, Breiding, Peter et. al 2023 etc..)

Case 2: Synchrotron (low energy particle distribution) + Synchrotron (high energy particle distribution)



Physically separated two population model

The two population model

- Acceleration region: bpl particle distribution (multiple acceleration processes; Sahayanathan 2008)
- **Advection region**: (Ginzburg & Sirovatskii 1964)

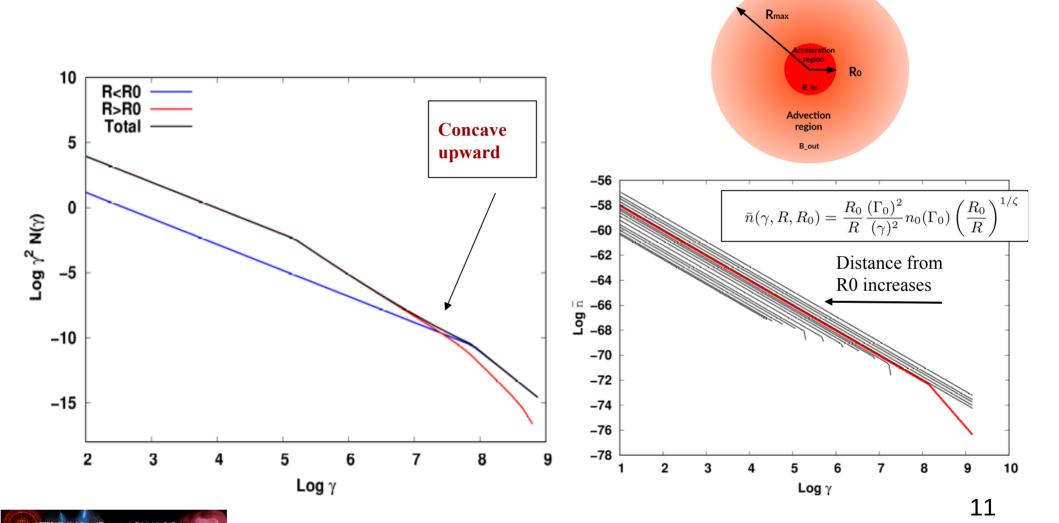
$$\frac{\partial N}{\partial t} = \frac{\partial}{\partial \gamma} (PN) - \frac{N}{\tau} + Q$$

 Delta function injection of particles at R0 - green's function method (Kardashev 1962; Atoyan & Aharonian 1997)

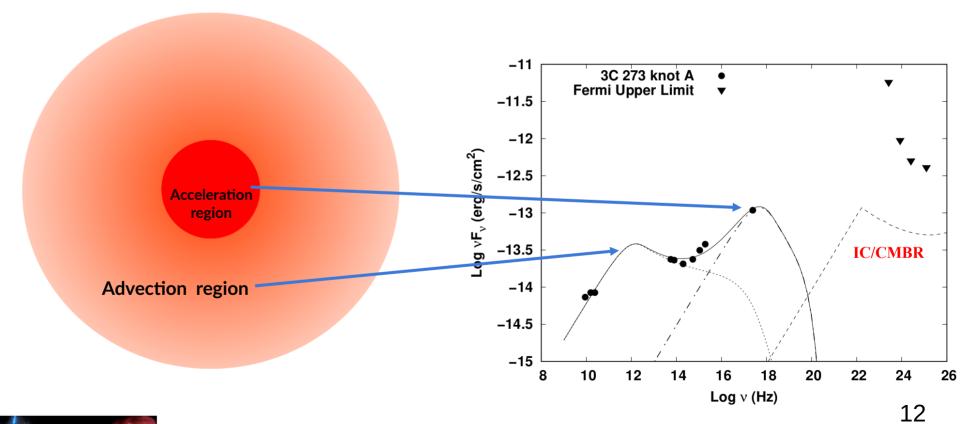
$$\frac{\partial \bar{n}(\gamma, R, R_0)}{\partial R} = \frac{\partial}{\partial \gamma} \left[\bar{P}(\gamma, R) \, \bar{n}(\gamma, R, R_0) \right] - \frac{\bar{n}(\gamma, R, R_0)}{R_*(R)} + n_0(\gamma) \, \delta(R - R_0)$$

$$\bar{P}(\gamma, R) = \frac{d\gamma}{dR} = \xi \gamma^2 + \frac{\gamma}{R}$$

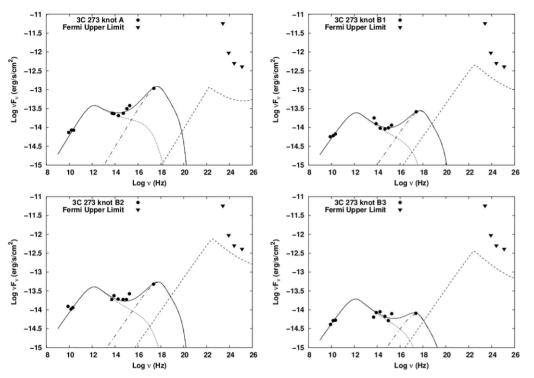
The two population model

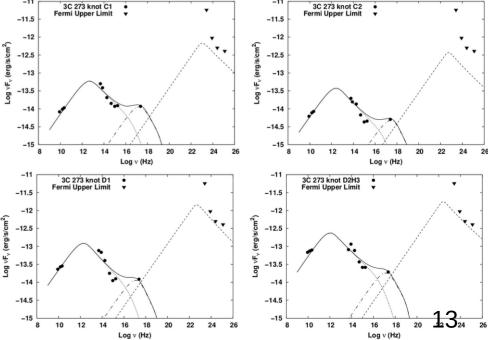


$$\frac{\partial \bar{n}(\gamma, R, R_0)}{\partial R} = \frac{\partial}{\partial \gamma} \left[\bar{P}(\gamma, R) \, \bar{n}(\gamma, R, R_0) \right] - \frac{\bar{n}(\gamma, R, R_0)}{R_*(R)} + n_0(\gamma) \, \delta(R - R_0)$$


$$\bar{n}(\gamma, R, R_0) = \frac{R_0}{R} \frac{(\Gamma_0)^2}{(\gamma)^2} n_0(\Gamma_0) \left(\frac{R_0}{R}\right)^{1/\zeta}$$

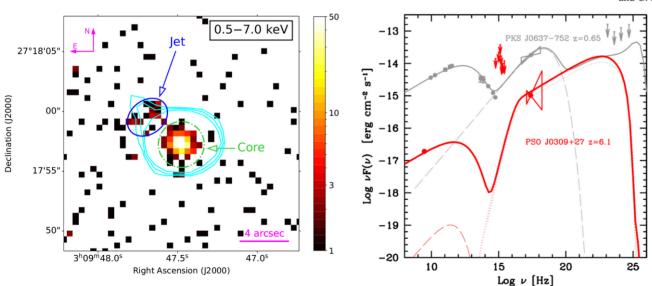
$$n_0(\gamma) d\gamma = \begin{cases} K \gamma^{-p} d\gamma & \gamma_{\min} < \gamma < \gamma_b, \\ K \gamma_b^{q-p} \gamma^{-q} d\gamma & \gamma_b < \gamma < \gamma_{\max}. \end{cases}$$

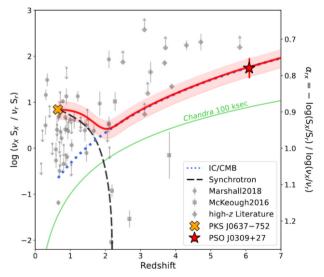



The two population model:

Knot	R_0 (kpc)	$R_{\rm size}$ (kpc)	$B_{\rm in}~(10^{-5}~{\rm G})$	$\omega = \frac{B_{\rm in}}{B_{\rm out}}$	$\gamma_{\rm b}~(10^7)$	$v_{\rm ad} \ (10^{-2}c)$	p	q	Γ	ζ
A	0.12	2.9	1.5	2.08	7.5	2.0	2.0	4.0	1.3	7.0
B1	0.10	5.5	1.8	3.3	6.5	1.6	2.13	4.0	2.0	7.0
B2	0.10	5.50	2.0	3.6	6.18	1.6	2.13	4.0	2.0	7.0
B3	0.09	5.5	1.3	2.4	4.85	1.6	2.13	4.0	2.0	7.0
C1	0.08	8.0	1.9	3.45	3.64	9.0	2.12	4.0	1.7	5.5
C2	0.05	6.0	1.9	3.17	4.70	5.0	2.13	4.2	1.7	9.5
D1	0.05	6.0	1.5	3.0	3.58	4.0	2.13	4.2	1.6	9.5
D2H3	0.05	6.5	1.1	2.4	4.62	2.5	2.11	4.0	1.3	9.5

Rahman et al, 2022, MNRAS


X-ray emissions from large scale jets of AGN at high redshifts

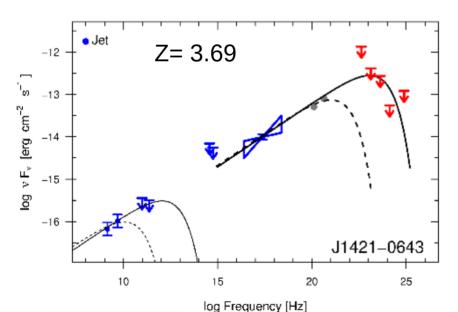

$$U_{CMB} \propto (1+z)^4$$

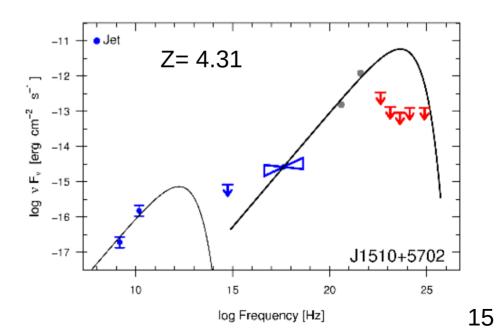
PSO J0309+27

Direct observation of an extended X-ray jet at z=6.1

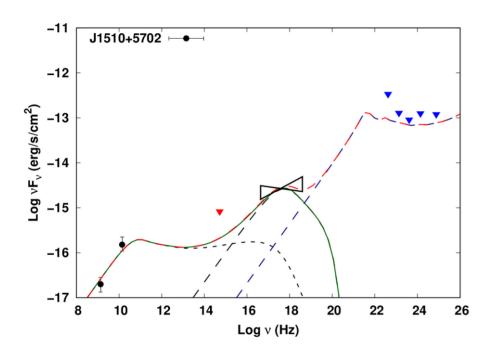
L. Ighina^{1,2}, A. Moretti¹, F. Tavecchio³, A. Caccianiga¹, S. Belladitta^{1,2}, D. Dallacasa^{4,5}, R. Della Ceca¹, T. Sbarrato³, and C. Spingola⁵

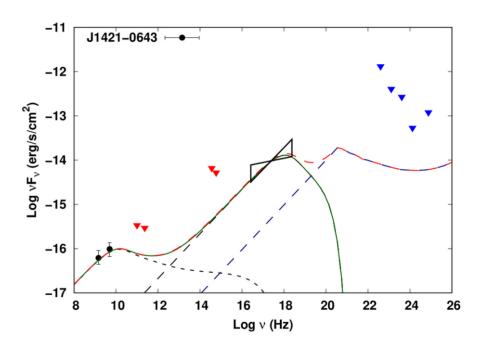
At high redshift, IC/CMB cooling time < shear acceleration timescale


X-ray emissions from large scale jets of AGN at high redshifts

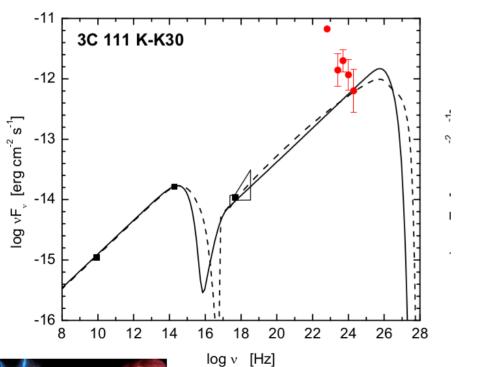

A Multi-Wavelength Study of Multiple Spectral Component Jets in AGN: Testing the IC/CMB Model for the Large-Scale-Jet X-ray Emission

Peter Breiding, ^{1 *} Eileen T. Meyer, ² Markos Georganopoulos, ^{2,3} Karthik Reddy, ² Kassidy E. Kollmann, ^{2,4} and Agniva Roychowdhury ²

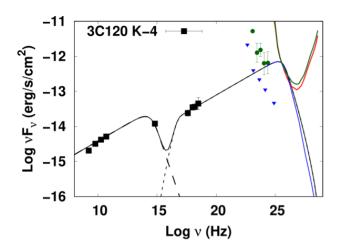

Test the IC/CMB model in 45 extragalactic X-ray jets

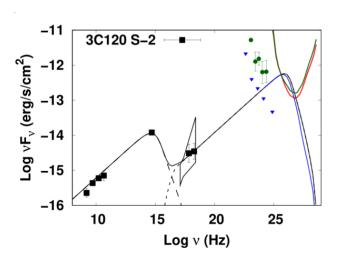

Two sources at z > 3.5

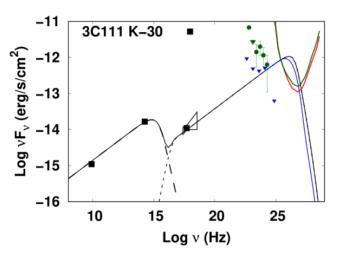
X-ray emissions from large scale jets of AGN at high redshifts



Under preparation...

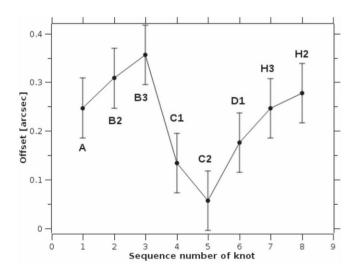

Probing the IC/CMB interpretation: VHE observations???


IC/CMB: not ruled out by Fermi observations (studies until 2023)



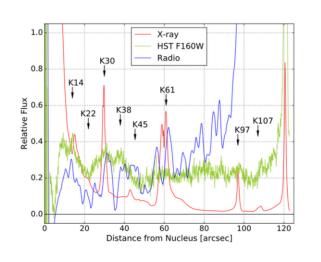
Source	Туре	Knot	z
3C 15	FR-I	KC	0.073
3C 17	Hybrid	S 3.7	0.22
3C 17	Hybrid	S 11.3	0.22
3C 111	FR-II	K 22	0.049
3C 111	FR-II	K 30	0.049
3C 111	FR-II	K 61	0.049
3C 120	FR-I	K4	0.033
3C 120	FR-I	S 2	0.033
PKS 1354+195	CDQ	S 4.0	0.720
PKS 1354+195	CDQ	S 5.3	0.720
3C 346	FR-I	KC	0.161
3C 454.3	CDQ	ΚA	0.859
3C 454.3	CDQ	KB	0.859
PKS 2101-490	CDQ	K 6	1.040
PKS B0106+013	CDQ	K 1	2.11
PKS B0106+013	CDQ	K 2	2.11
PKS B0106+013	CDQ	K 3	2.11
PKS 1045-188	CDQ	KC	1.5 90

HEPRO VIII : High Energy Phenomena in Relativistic Outflows

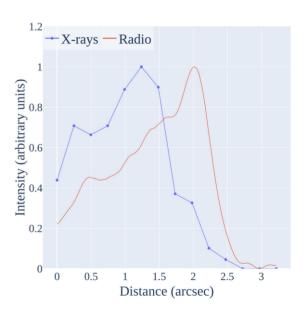


Rahman et al, 2023, MNRAS

Source	Туре	Knot	z	
3C 15	FR-I	KC	0.073	
3C 17	Hybrid	S 3.7	0.22	
3C 17	Hybrid	S 11.3	0.22	
3C 111	FR-II	K 22	0.049	
3C 111	FR-II	K 30	0.049	
3C 111	FR-II	K 61	0.049	
3C 120	FR-I	K 4	0.033	
3C 120	FR-I	S 2	0.033	J
PKS 1354+195	CDQ	S 4.0	0.720	
PKS 1354+195	CDQ	S 5.3	0.720	
3C 346	FR-I	KC	0.161	
3C 454.3	CDQ	ΚA	0.859	
3C 454.3	CDQ	KΒ	0.859	
PKS 2101-490	CDQ	K 6	1.040	
PKS B0106+013	CDQ	K 1	2.11	
PKS B0106+013	CDQ	K 2	2.11	
PKS B0106+013	CDQ	K3	2.11	
PKS 1045-188	CDQ	KC	0.590	


Radio NV Xray 0.6 0.4 0.2 0.4 0.2 0.2 0.4 Distance [arcsec]

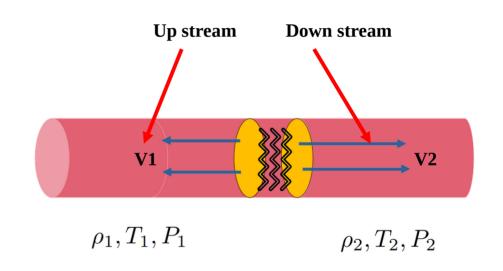
Offset measurements in 3C 273 Marchenko, Volodymyr et al, 2017 (ApJ)



X-ray/ radio offsets in jet emissions

Are emitting regions **CO-SPATIAL** or not???

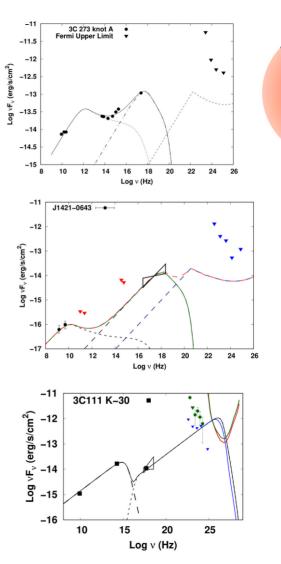
Clautice, Devon et. al, 2016 (ApJ))



PKS 0605–08 Reddy, Karthik et al., 2021 (ApJ)

X-ray/ radio offsets in jet emissions

- Cylindrical jet
- Difference in thermodynamic conditions at upstream/downstream of the shock.
- The Synchrotron cooling time scale extension of region
- The advection velocity + cooling time scale: nature of the offset (Xf/Rf)



Electron acceleration & advection model:
 production of physically separated two population
 explain multiwavelength emission of 3C 273.

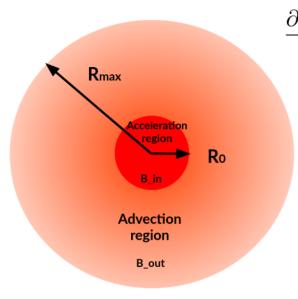
• IC/CMB ruled out for high z jets (J1510+5702 & J1421-0643)

The model explains radio/optical/X-ray emissions.

- The scope of VHE observations additional tool
 3C 111 & 3C 120
- Digging out the physics of offsets!!

Advection

region



- LOC/SOC HEPRO VIII
- Science & Engg Research Board, Govt. Of India
- University Grants Commission, Govt of India
- Farook College & BARC Mumbai.

The two population model

$$\frac{\partial \bar{n}(\gamma, R, R_0)}{\partial R} = \frac{\partial}{\partial \gamma} \left[\bar{P}(\gamma, R) \, \bar{n}(\gamma, R, R_0) \right] - \frac{\bar{n}(\gamma, R, R_0)}{R_*(R)} + n_0(\gamma) \, \delta(R - R_0)$$

$$\bar{P}(\gamma, R) = \frac{d\gamma}{dR} = \xi \gamma^2 + \frac{\gamma}{R}$$

$$\bar{n}(\gamma, R, R_0) = \frac{R_0}{R} \frac{\Gamma_0^2}{\gamma^2} n_0(\Gamma_0) \exp\left[-\int_{R_0}^R \frac{dx}{R_*(x)}\right]$$

$$\Gamma_0(\gamma, R) = \frac{\gamma \frac{R}{R_0}}{1 - \xi \gamma R \ln \frac{R}{R_0}}$$
 $R_*(R) = \zeta R^{\alpha}$

$$R_{\max}(\gamma) \le R_0 + \frac{1}{\xi} \left(\frac{1}{\gamma} - \frac{1}{\gamma_{\max}} \right) \qquad \frac{R_{\max}}{R_0} = \frac{\gamma_{\max}}{\gamma} \left[1 - \xi \gamma R_{\max} \ln \left(\frac{R_{\max}}{R_0} \right) \right]$$

$$\bar{n}(\gamma, R, R_0) = \frac{R_0}{R} \frac{(\Gamma_0)^2}{(\gamma)^2} n_0(\Gamma_0) \left(\frac{R_0}{R}\right)^{1/\zeta}$$

