A large-energy relativistic jet model for GRB 080710 producing bright achromatic afterglow.

ABSTRACT

We present a possible theoretical interpretation of the observed afterglow emission of long gamma-ray burst GRB 080710. Assuming that the angular distribution of the outflow energy is top-hat or Gaussian-shaped, we calculate the observed light curves of the synchrotron emission from the relativistic jets and explore the model parameters that explain the observed data. It is found that a narrowly (half opening half ~ 0.02 rad) collimated Gaussian-shaped jet with large isotropic-equivalent energy ($\sim 10^{55}$ erg) is the most plausible model to reproduce the observed afterglow behavior. Namely, the off-axis afterglow scenario to the achromatic peak is unlikely. For details, see our paper, Obayashi et al. 2023 [1].

1. Introduction

Why GRB 080710 [2]?

- Opt/IR afterglows show achromatic peak at 2.2×10^3 s.
- Opt/IR afterglow before the peak increases ($F_{\nu} \propto T^{1.1}$).

2. Afterglow Model

Dependence on jet structures and jet viewing angle is studied.

Two types of jet structures.

 θ_{c}

Both $\boldsymbol{\theta}_{i} < \boldsymbol{\theta}_{v}$ and

 θ_i

jet axis

 $\theta = 0$

 θ_{v}

However,

- Prompt emission energy is as bright and hard as on-axis events.
- Rising slope as off-axis afterglow may be steeper than observed.

Let's fit data with off-axis structured jet model.

3. Fitting Method

Using the Python MCMC module emcee [4], we perform a Bayesian estimation to fit the optical (r-band), infrared (z-band), and X-ray afterglow of GRB 080710.

1. Top-hat jet (TH) $E(\boldsymbol{\theta}) = \begin{cases} E_0 & (\boldsymbol{\theta} \leq \boldsymbol{\theta}_j) \\ \mathbf{0} & (\boldsymbol{\theta} > \boldsymbol{\theta}_j) \end{cases}$

2. Gaussian jet

$$E(\theta) = \begin{cases} E_0 \exp\left(-\frac{\theta^2}{2\theta_c^2}\right) & (\theta \leq \theta_j) \\ 0 & (\theta > \theta_j) \end{cases}$$

- Gamma-Flat (GF) ;
$$\Gamma(\theta) = \Gamma_0$$

 $\theta_i > \theta_v$ are considered - Gamma-Even-Mass (GEM); $\Gamma(\theta) = 1 + (\Gamma_0 - 1) \frac{E(\theta)}{E_0}$

Afterglowpy [3] is used to calculate the observed light curves.

Model parameters	Prior bounds
θ_c Half-width of the jet core	[0.001, 0.5]
θ_j Half-opening angle of jet	$[1, 2] \times \theta_c$
θ_{v} Viewing angle	$[0, 1.5] \times \theta_j$
Γ_0 Initial Lorentz factor jet central axis	[10, 500]
E_0 Initial isotropic equivalent energy on-axis	$[10^{50}, 10^{55}]$
n_0 Number density of ISM	$[10^{-4}, 10^2]$
p Electron distribution power-law index	[2.01, 2.9]
ε_B Thermal energy fraction in electrons	$[10^{-3}, 10^{-0.3}]$
ε_e Thermal energy fraction in magnetic field	$[10^{-5}, 10^{-0.3}]$
ξ_N Fraction of electrons that get accelerated	$[10^{-2}, 10^{0}]$

5. Discussion

- On-axis afterglow is consistent with the typical prompt emission.
- In the TH, GF, and GEM, the optical/infrared achromatic peak is explained by the jet deceleration.
 - Huge isotropic equivalent energy value of $E_0 \sim 10^{55}$ erg.
 - Collimation-corrected jet energy is normal due to the narrow jet. - Efficiency of prompt emission is much smaller than inferred values.

- Opt/IR achromatic peak was reproduced by TH, GF, and GEM.
- Three models are different after $\sim 10^4$ s for opt/IR. \rightarrow Only GEM explains the data at $\sim 3 \times 10^5$ s.
- The rising part was not explained yet $(\chi^2/d.o.f \rightarrow TH:1942/(96-9))$ GF:2124/(96-10), GEM:900/(96-10)), but the GEM is preferred.

6. Conclusion & Future Work

Using Bayesian inference with MCMC, we have found a possible scenario of GRB 080710 showing achromatic optical/infrared peak at $2.2 imes 10^3$ s. Contrary to the claim of off-axis afterglow model [2], we find that on-axis structured narrow jet model and the large value of the initial isotropic equivalent energy in all models. The best jet structure is the GEM but does not perfectly.

$$\eta_{\gamma} = \frac{E_{\gamma,\text{iso}}}{\left[E_{\gamma,\text{iso}} + E(\theta_{\text{obs}})\right]} \sim 6 \times 10^{-4}$$

- \rightarrow Low prompt efficiency is, for example, explained by less turbulent flow in the GRB jet??
- The r-band and z-band fluxes roughly $F_{\nu} \propto T^2$ for GEM.
- They implicate the free expansion phase before the peak.
- The GEM is better than TH and GF ($F_{\nu} \propto T^3$) to fit observed data.
- \rightarrow More gradual flux increase for better fit to the observed data.
- A strong point of our GEM is that the decay slope immediately after the peak is steep due to the whole jet emission coming to observer. $\Gamma(\theta_i)|\theta_{obs}+\theta_i|<1.$

• Huge energy and narrow jet are similar to those of GRB 221009A.

- More complicated jet structure might be necessary.
 - \rightarrow The non-uniform circumburst medium like wind profile?
- Achromatic peak events like GRB 080710 have been detected GRBs 050408, 071031, and 080603A.

References

[1] Obayashi et al., 2023 [<u>arXiv:2310.08900</u>] [2] Krühler et al., 2009, A&A, 508, 593. [3] Sari, Piran, & Narayan, 1998, ApJL, 497, L17. [4] Ryan et al., 2020, ApJ, 896, 166. [5] Foreman-Mackey et al., 2013, PASP, 125, 306.