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. ROTATION-POWERED BINARIES

Gamma-ray binaries are the pairing of an energetic pulsar
and a massive star. Their emission, peaking at MeVs and
extending up to TeVs, is intricately tied to the orbital
motion. In the wind-driven scenario, non-thermal emission
IS fueled by the pulsar's spin-down. The pulsar wind
Interacts with the wind from the companion star forming a
double bow shock with a contact discontinuity (Canto et al.
1996). On-large scales, orbital motion causes the pulsar
wind to progressively “bend”. The asymmetric wind—wind
Interaction produces a second. shock at the Coriolis
turnover location.(Bosch-Ramon & Barkov 2011; Zabalza
et al. 2013).

I1: MODELLING THE EMITTING-REGION

The contact discontinuity and Coriolis shock are the
primary locations for particle acceleration-and non-thermal

emission. The emitting region largely scales with the orbital

phase (consistent with hydrodynamic simulations; Bosch-
Ramon etal. 2015, Kissmann et al. 2023) for eccentric
orbits, so the processes related to the two-wind-interaction
proceed under different physical conditions at different
orbital phases. Our semi-analytical modelling accounts for
angular effects related to orbit-induced bending and
relativistic effects related to the acceleration of the
shocked flow.

[ll..RADIATIVE REGIMES & EMISSION

The reacceleration of the flow also means that we need to
be aware of the dominant cooling processes at-each
region. Close to the apex the emitting region is radiative,
but downstream of the shock we may deal with adiabatic
cooling. Thus, the emission is modeled by a leptonic multi-
zone model considering synchrotron and inverse
Compton, y-ray absorption, and particle escape. The
adopted particle distribution is a simple power law with an
exponential cutoff.

APPLICATION TO LS 5039
(Dubus et al. 2015, Molina & Bosch-Ramon 2020;
Huber et al. 2021; Yoneda et al. 2021)

+ X-rays may be a product of a broken power law
with a hard high-energy component.

+ The computed MeV band shows behavior
consistent with observations but fluxes do not
reach the data.

+ A lower-energy component dominated by inverse
Compton losses and possibly related to the
unshocked pulsar wind electron energy
distribution is needed to explain the GeV.

+ TeV emission originates from the Coriolis shock
where yy absorption is less relevant.
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Adopted Parameters

Low=10%"ergs*

Pulsar spin-down power

Stellar wind mass-loss rate

M=1x10"Meyr?

Power-law index p=1.2
Minimum electron energy Enin=1 GeV
Magnetization ' Ns=0.3
(wrt shocked pulsar wind pressure)
Acceleration factor Nacc=0.5
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Fig. 1. Modeled (blue line) and observed
(yellow points) averaged spectra at SUPC
and INFC. The dashed and dotted lines are
the contact discontinuity and Coriolis shock
contributions, respectively.

Coriolis Shock
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Fig. 2. Modeled (blue line) and observed
(yellow points) light curves for X-ray

(Suzaku), MeV

(COMPTEL),

GeV

(Fermi/LAT), and TeV (H.E.S.S.) bands.
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