Can the Thermal Evolution of the Fireball alone explain the GRB 171227A?

Soumya Gupta ^{1,2}, Sunder Sahayanathan ^{1,2,} Dipankar Bhattacharyya³

¹ HBNI, Mumbai, India ² BARC, Mumbai, India ³ Physics Department, Ashoka University, Haryana, India

- Majority of GRBs spectra are well-fitted with an empirical Band function.
- We propose a multi-temperature blackbody (mBB) spectrum which manifests the photospheric emissions from the different radii and angles under the relativistic fireball formalism.
- To better understand the GRB evolutionary process, we perform a detailed study of this model with its temperature decreasing as a function of its radius.
- A numerical code developed under this scenario is employed to reproduce the spectrum of the GRB 171227A during its bright phase.
- The spectral fitting is performed by coupling this numerical model with the statistical fitting package XSpec.
- From the best-fit parameters, we analyze the evolutionary behaviour of the fireball and check for its physical consistency.

EXPANDING FIREBALL

- Considering the evolution of temperature with the radius (expansion)
- High Lorentz factor leads to the angle dependence of the Doppler shift
 - The equator emission follows after the high latitude emission.
 - Hence the off axis emission

GRB 171227A SPECTRAL ANALYSIS

- Data used : Fermi GBM
- Detectors: NaI 5 and BGO 1
- One of the Bright burst
- T₉₀: 35.0 sec burst (T₀-T₀+35.0)
- Unpolarised Burst reported by Chattopadhyay et al 2022

We coupled the numerical mBB model with the XSpec and the fitting is performed for the GRB 171227A.

Energy (keV)

Band model

SUMMARY

SW: 1e = 3, F: 300

--- t: 10. s

Fig: The variation of spectral shape and width for different Γ , SW and α

Fig: Variation of Spectral width with α by varying different physical parameters

- Under the fireball interpretation of GRB, the spectral width of the time averaged spectrum can indicate the evolution of temperature.
- A numerical model is developed to imitate the expanding fireball model and applied on the bright GRB 171227A.
- The spectra of GRB 171227A is well fitted with the mBB model.
- There was degeneracy found between the photospheric temperature and bulk Lorentz factor.
- This supports the previos polarisation study by Chattopadhyay et al 2022, where this burst was reported to be unbpolarised.
- The mBB model is capable to explain different shapes and widths of the spectrum.

REFERENCES

SW:1.F:300

- Broadening of the thermal component of the prompt GRB emission due to rapid temperature evolution, Bharali et.al. 2017
- Photospheric emission in gamma-ray burts, Peer et.al, 2016
- Multi color Black body emission in GRB 081221, Hou et al, 2018

Further details about this work contact us at: soumya.gupta1512@gmail.com