Accelerated cosmic rays' feedback on relativistic jets

A. Carvalho^[1], E. M. de Gouveia Dal Pino^[1], T. Medina-Torrejón^[1,2] & G. Kowal^[3]

^[1]Institute of Astronomy, Geophysics and Atmospheric Sciences - University of São Paulo (IAG-USP)
 ^[2] Institute of Physics, University of São Paulo (São Carlos)
 ^[3]School of Arts, Sciences and Humanities, University of São Paulo (EACH-USP)

augustocarvalho@usp.br

Abstract

This work focuses on computing the influence of particles accelerated by magnetic reconnection in the background plasma of relativistic jets, therefore, particle feedback. Recent works [1, 2] have focused on computing test particles (cosmic rays, CRs hereafter) acceleration by magnetic reconnection in relatvistic magnetohydrodynamic (RMHD) and RMHD particle-in-cell (RMHD-PIC) simulations of such jets, without accounting for their feedback on the background plasma. This influence on the resulting Lorentz force is yet to be determined in this class of simulations. We propose a post-processing strategy to account for such effects. In a first step, we employ RMHD-PIC simulations (using PLUTO code) performed in [2]; next, we fetch the particles' positions and velocities in desired snapshots and compute the Lorentz force attributed to them, following [3]. The current density for each cell in the mesh is computed according to the number of particles it contains. The average work performed by the particles and by the plasma on the system are computed, showing that the former is lower by a factor of $\approx 10^{-2}$, therefore not having much influence on the plasma dynamics or the particle acceleration pro-Cess.

$$\frac{\partial}{\partial t} \begin{pmatrix} D \\ \boldsymbol{m} \\ E_t \\ \boldsymbol{B} \end{pmatrix} + \nabla \cdot \begin{pmatrix} D\boldsymbol{v} \\ w_t \gamma^2 \boldsymbol{v} \boldsymbol{v} - \boldsymbol{b} \boldsymbol{b} + \boldsymbol{I} p_t \\ \boldsymbol{m} \\ \boldsymbol{v} \boldsymbol{B} - \boldsymbol{B} \boldsymbol{v} \end{pmatrix}^T = \begin{pmatrix} 0 \\ \boldsymbol{f}_g \\ \boldsymbol{v} \cdot \boldsymbol{f}_g \\ 0 \end{pmatrix}, \quad (1)$$

where *D* and *m* are the laboratory and momentum densities, respectively, and E_t and f_g are the total energy and external force terms, respectively. The term w_t represents the total enthalpy. γ is the Lorentz factor, p_t is the total pressure and *I* is the identity operator. The box has L = [6, 6, 10]with a resolution of 256 in all directions, with the simulation running until t = 60 in code units. 50,000 particles are injected and the magnetic reconnetion zones are identified. For more details see [1, 2, 13]. 5. Conclusions

We have found that, while the jet plasma is able to accelerate the particles up to ultra-high energies (Medina-Torrejon et al. 2021, 2023; Figure 1), the back-reaction of the particles on the jet plasma is negligible and does not produce considerable changes in its dynamics. This was assessed by comparing the work performed by the particles and that of the jet. We also expect that these losses will not influence the resulting power law spectrum of the particles calculated in [1, 2].

1. Introduction

Magnetic reconnection happens when magnetic field lines of opposite polarities encounter each other, releasing energy in the process. In the presence of turbulence, this process is fast. The reconnection rate is a substantial fraction of the Alfvén velocity and indepedent of the microscopic resistivity [4]. This process has been successfully found in 3D MHD numerical simulations of classical and relativistic flows [5, 6]. It has been analytically demonstrated that particles can be accelerated in such fast reconnecting layers via a first-order Fermi process [7]. The efficiency of this process has been also probed numerically, both in nonrelativistic 3D MHD flows [8, 9, 10] and in relativistic astrophysical jets [1, 2]. The particles undergo Fermi-like acceleration and can reach energies up to 10^{18} eV. However, while Godunov-based MHD codes such as RAISHIN [11] or PLUTO [12] offer powerful numerical tools for these simulations, and in particular when combined with a PIC technique, the particles' feedback is not accounted for in the relativistic case. We propose a post-processing analysis to account for such feedback, following the formulation of [3].

We define the current densities for the jet and for particles with velocity v_p and position x_p as

$$oldsymbol{J} =
abla imes oldsymbol{B},$$

(2)

where B is the plasma magnetic field, and

$$\boldsymbol{J}_{i} = \sum_{p} cW(\boldsymbol{x}_{i} - \boldsymbol{x}_{p})\alpha_{p}\rho_{p}\boldsymbol{v}_{p}, \qquad (3)$$

with $\alpha_p = (e/mc)_p$ being the CR charge-to-mass ratio and ρ_p being the mass density contribution of a single particle. *i* is index of the cell where the current density is being calculated and *W* is the Triangular Shape Cloud (TSC) weight function:

$$W_{i\pm 1} = \frac{1}{2} \left(\frac{1}{2} \pm \delta \right)^2; \qquad W_i = \frac{3}{4} - \delta^2,$$
 (4)

where $\delta = (x_p - x_i)/\Delta x$ is the distance between the particle and the *i*-esimal zone, and $\delta \in [-1/2, 1/2]$.

The work due to the Lorentz force can then be calculated as $v_k \cdot (J_k \times B)$.

4. Results

We first analyze the growth of average velocities and Lorentz force terms in each time step, for both jet an particles. Whereas particle's velocities are $\approx 10^2$ higher than the jet's, this is compensated by the ratio of Lorentz force terms, which is $\approx 10^{-2}$.

Acknowledgements

This work is supported by the São Paulo Research Foundation (FAPESP) under grants 2013/10559-5, 2022/07971-0, and 2021/02120-0, and by a CNPq grant (308643/2017-8).

References

- [1] T. E. Medina-Torrejón, E. M. de Gouveia Dal Pino, L. H. Kadowaki, G. Kowal, C. B. Singh, and Y. Mizuno, "Particle acceleration by relativistic magnetic reconnection driven by kink instability turbulence in poynting flux– dominated jets," *The Astrophysical Journal*, vol. 908, no. 2, p. 193, 2021.
- [2] T. E. Medina-Torrejón, E. M. de Gouveia Dal Pino, and G. Kowal, "Particle acceleration by magnetic reconnection in relativistic jets: the transition from small to large scales (accepted)," *arXiv preprint arXiv:2303.08780*, 2023.
- [3] X.-N. Bai, D. Caprioli, L. Sironi, and A. Spitkovsky, "Magnetohydrodynamic-particle-in-cell method for coupling cosmic rays with a thermal plasma: application to non-relativistic shocks," *The Astrophysical Journal*, vol. 809, no. 1, p. 55, 2015.

Figure 1: *Left: 3D RMHD-PIC simulation: particles are accelerated in fast magnetic reconnection sites represented by green squares. Right: histogram of the particles kinetic energy growth with time when injected in the nearly steady state snapshot of the turbulent background jet on the left. [1, 2].*

Figure 2: Average velocities per time step.

The work of the jet is negative throughout the whole simulation, meaning that it gives energy to the particles. Its magnitude is also higher than the CR's work. When comparing both terms, the particle-to-jet work ratio is negligible, as shown in Figure 3.

- [4] A. Lazarian and E. T. Vishniac, "Reconnection in a weakly stochastic field," *The Astrophysical Journal*, vol. 517, no. 2, p. 700, 1999.
- [5] G. Kowal, A. Lazarian, E. Vishniac, and K. Otmianowska-Mazur, "Numerical tests of fast reconnection in weakly stochastic magnetic fields," *The Astrophysical Journal*, vol. 700, no. 1, p. 63, 2009.
- [6] M. Takamoto, T. Inoue, and A. Lazarian, "Turbulent reconnection in relativistic plasmas and effects of compressibility," *The Astrophysical Journal*, vol. 815, no. 1, p. 16, 2015.
- [7] E. M. de Gouveia Dal Pino and A. Lazarian, "Production of superluminal ejections from galactic black holes by violent magnetic reconnection," in *The Tenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (In 3 Volumes)*, pp. 1372–1374, World Scientific, 2005.
- [8] G. Kowal, E. d. G. Dal Pino, and A. Lazarian, "Magnetohydrodynamic simulations of reconnection and particle acceleration: three-dimensional effects," *The Astrophysical Journal*, vol. 735, no. 2, p. 102, 2011.
- [9] G. Kowal, E. M. de Gouveia Dal Pino, and A. Lazarian, "Particle acceleration in turbulence and weakly stochastic reconnection," *Physical Review Letters*, vol. 108, no. 24, p. 241102, 2012.
- [10] M. V. del Valle, E. de Gouveia Dal Pino, and G. Kowal, "Properties of the first-order fermi acceleration in fast magnetic reconnection driven by turbulence in colli-

2. Objectives

- 1. Implement the methods in [3] to compute particle feedback on 3D-RMHD-PIC simulation data from [2];
- 2. Quantify the influence of such feedback by computing the Lorenz force work performed by the particles and comparing this to that performed by the background plasma.

3. Methodology

Data from simulations performed with PLUTO [12] by [2] was fetched. The software implements the RMHD equations and solves them for each time step:

Figure 3: Average work ratio per time step.

sional magnetohydrodynamical flows," *Monthly Notices of the Royal Astronomical Society*, vol. 463, no. 4, pp. 4331–4343, 2016.

- [11] Y. Mizuno, Y. Lyubarsky, K.-I. Nishikawa, and P. E. Hardee, "Three-dimensional relativistic magnetohydrodynamic simulations of current-driven instability. iii. rotating relativistic jets," *The Astrophysical Journal*, vol. 757, no. 1, p. 16, 2012.
- [12] A. Mignone, G. Bodo, B. Vaidya, and G. Mattia, "A particle module for the pluto code. i. an implementation of the mhd–pic equations," *The Astrophysical Journal*, vol. 859, no. 1, p. 13, 2018.
- [13] L. H. Kadowaki, E. M. d. G. Dal Pino, T. E. Medina-Torrejón, Y. Mizuno, and P. Kushwaha, "Fast magnetic reconnection structures in poynting flux-dominated jets," *The Astrophysical Journal*, vol. 912, no. 2, p. 109, 2021.

